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Abstract

This thesis investigates cryptographic protocol verification in the CCSA framework, a
formal verification approach based on a probabilistic logic for proving security properties in
the computational model. This framework is implemented in the Squirrel proof assistant.
The main focus of the thesis is the mechanization of cryptographic reductions — a core
proof technique in cryptography in which the security of a protocol is reduced to a
cryptographic hardness assumption via the construction of a simulator.

Prior to this thesis, the CCSA framework provided logical axioms whose soundness was
established through manual, error-prone reductions to a fixed set of cryptographic hardness
assumption (e.g., CCA, PRF, EUF-MAC). Each axiom also necessitated implementation
efforts, which were prone to errors. Unfortunately, these tasks (designing, proving, and
implementing the axioms) were inaccessible to typical users, thus limiting the scalability
of the CCSA approach.

The main contribution of this thesis is a framework that captures reductions to
arbitrary cryptographic games for the CCSA framework. We introduce a logic with a core
predicate, the bideduction predicate, which express the existence of a simulator justifying
a cryptographic reduction. We then provide a proof system to derive such predicates,
implicitly inferring simulators. We further implement in SQUIRREL a proof search procedure
that synthesize memoizing simulators and generates time-sensitive invariants to justify the
inferred simulator’s correctness. Our implementation significantly extends SQUIRREL’s
scope as it extends the set of supported cryptographic hardness assumptions. To validate
our approach, we apply it to case studies, reproving existing SQUIRREL case studies and
analysing new ones which were not provable in SQUIRREL before. This work culminates
with the first mechanized proof of ballot privacy for the FOO e-voting protocol — the
largest proof conducted in SQUIRREL to date.
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Résumé

Cette these étudie la vérification des protocoles cryptographiques dans le cadre CCSA,
une approche de vérification formelle basée sur une logique probabiliste pour prouver les
propriétés de sécurité dans le modele computationnel. Cette approche est implémentée dans
I’assistant de preuve SQUIRREL. Cette these s’intéresse a la mécanisation des réductions
cryptographiques, une technique de preuve centrale en cryptographie ou la sécurité d’un
protocole est réduite a une hypothese calculatoire cryptographique par la construction
d’un simulateur.

Avant cette these, le cadre CCSA fournissait des axiomes logiques dont la validité était
établie manuellement par des réductions. Ces réductions sont une source possible d’erreurs
et les axiomes logiques n’avait été congus seulement pour un nombre restreint d’hypotheses
calculatoires (par exemple, CCA, PRF, EUF-MAC). Chaque axiome nécessitait également
un effort d’implémentation, lui aussi source d’erreurs. Malheureusement, ces taches
(conception, preuve et implémentation des axiomes) étaient inaccessibles aux utilisateurs
typiques, limitant ainsi la capacité de I'approche CCSA a passer a 1’échelle.

La contribution majeure de cette these est une approche permettant de capturer des
réductions vers des jeux cryptographiques arbitraires dans le cadre de la logique CCSA.
Nous introduisons une logique dont le prédicat central, le prédicat de bidéduction, formalise
I’existence d’un simulateur justifiant une réduction cryptographique. Nous proposons
ensuite un systeme de preuve pour dériver ces prédicats, qui infere implicitement les
simulateurs. Nous avons en outre implémenté dans SQUIRREL une procédure de recherche
de preuve qui synthétise des simulateurs qui mémoisent et génerent des invariants sensibles
au temps pour justifier la correction des simulateurs inférés. Notre implémentation
élargit significativement la portée des preuves dans SQUIRREL, en étendant I'ensemble
des hypotheses calculatoires cryptographiques supportées. Pour valider notre approche,
nous 'avons appliquée a des études de cas, en reproduisant des preuves existantes dans
SQUIRREL et en traitant de nouveaux cas qui n’étaient pas prouvables auparavant. Ce
travail culmine avec la premiere preuve mécanisée de la confidentialité des votes pour
le protocole de vote électronique FOO — la plus grande preuve réalisée a ce jour dans
SQUIRREL.
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Chapter

Introduction

Everyday life has become intertwined with technologies. Our contemporary societies
rely on digital tools for daily usages (chat with friends, mail at work, storing photos,
etc.), but these technologies also play a central role in our democratic life, our health or
educational systems, etc. This is not inconsequential. In particular, these technologies
have improved our communications (chat, clouds, numerical identities, etc.) but with that
comes the questions: How to prevent private data leaks? How to protect people’s privacy?
How to prevent malicious interferences? The generalization of remote communications
in every layer of society makes these questions crucial. Designing ways to communicate
that answer these challenges is an old research interest. This is the core of the science
called cryptography. This thesis lies in this large research area that tackles the security
of remote communications.

You have arrived at the beginning of this thesis. In this part, you will find a description
of its context. What are the problems that cryptography addresses and in particular
how this science expresses and studies them. To illustrate this, we use an example: a
staged problem, enacting two people Alice and Bob facing a security challenge. We will
use this example to give an overview of the different directions taken by the research
community and, more precisely, where this thesis fits. This beginning is designed to
be understandable with little technical knowledge. We want the context and general
problem to be understandable for anyone interested. Then, the introduction becomes
more complicated as we progress to the end. We narrow to fellow scientists to explain the
framework of this thesis and explain the contributions this thesis makes to the domain.

1.1 Protocols and attacks

1.1.1 Alice, Bob and Mallory

Context - Alice and Bob problem

Alice is a journalist. In her line of work, she often encounters situations where secret is
important. Typically, she manages identities of whistleblowers, ongoing investigations’
data, individual sources, and so on, which in some cases could even endanger her or
concerned people if revealed.
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Bob is one of her collaborators. They are working together on a sensitive case: say an
investigation on exactions committed by a powerful state. They need to meet online to
exchange sensitive information and their conversations must be kept hidden from anyone.
That is, they want everything their computers send to one another to be confidential,
when they both connect to the remote call.

We can also add more examples of digital security requirements, such as protecting
internet browsing privacy (which could reveal health or political opinions, for
example), securing databases against leaks (such as emails and phone numbers),
ensuring secrecy or authentication in internet voting, ...

Encryption and decryption

Luckily, Alice and Bob already know how to hide their messages’ content: by encrypting
them. An encryption mechanism is a probabilistic procedure that takes a message m,
the plaintext, and transforms it into an encrypted message ¢, the ciphertext, such that
no information about m can be retrieved from c¢'. In general, the asymmetric encryption
mechanism works as follows: Alice samples a secret key sk, and computes the associated
public key pk,, which is publicly associated to her. If Bob wants to send her a message
m only she can read, he encrypts m into the ciphertext {m},,. Finally, a decryption
mechanism is the inverse mechanism to decrypt ciphertexts. To retrieve m from {m},,
Alice needs the secret key sk,. Since this key is secret, only she should be able to decrypt.
The decryption of ¢ is noted dec(c,sk,), and assume that the decryption with the secret
key sk, of the encryption of any message m with the public key pk, yield m, or:

dec({m}pk,,ska) = m.

Bob also owns a secret key skp that he sampled. Alice can use the associated public
key pkjp to send messages that only he can read.

Unfortunately, asymmetric encryption is not well suited for video calls. Better-suited
procedures are symmetric encryption, notably faster than their asymmetric counterpart.
These procedures are also encryption procedures but where decryption and encryption
use the same key. This means that, in that kind of procedure, a single key key is used to
encrypt any message m into a ciphertext {m}yey, and to decrypt ¢ back to dec(c, key). To
use such procedures to encrypt their call, Alice and Bob must share a secret key key. So
they need to establish a key known only by themselves. They decide that each of them is
going to sample half of it, the final key will be the concatenation of the two halves. That
is Alice samples a half key n,, Bob samples a half key n, and the final key is key = n, - np,.

They both need to exchange their respective part: n, and np. In some ways, we are
still at square one: Alice and Bob need to exchange confidential messages. But now Alice
and Bob only need to exchange two half keys, which is a small amount of data. They
can use an asymmetric encryption procedure for that. The question is: how can they use
this asymmetric encryption procedure to send each other their share of the symmetric key,
using only their public key materials?

The first thought one might have is that Alice can send her part encrypted with Bob’s
public key pkj, that is {n,},k,, and Bob can send his part encrypted with Alice’s public

IExcept the length the message, which can never be completely hidden.
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|’_____1 {navpka}pkb ‘If_____]
| i

| | (e, Mo, | |

| Alice |: i Bob |

| | {nb, na}pi, ‘l |

e e

Figure 1.1: The Niedam-Schroder protocol.

key pkg, that is {np},k,. But, in that case, Alice or Bob cannot be sure that what they
received has indeed been sent by the other, and not someone else. Indeed, the keys pk,
and pkj are public and anyone can encrypt messages destined to Alice or to Bob.

Protocol

Alice and Bob make a quick research, and find an academic research article solving their
problem [1]. They decide to follow the Needham-Schroeder protocol. It has been proven
secure by a pen and paper math proof.

It works as follows, and is described in Figure 1.1:

o First, Alice sends her share of the symmetric key, n,, to which she attaches her
public key pk, to identify her message. She encrypts the whole with Bob’s public
key pkp, ensuring that only Bob can retrieve n,.

o Upon receiving this message, Bob can decrypt it with his secret key. The identity
attached to n, informs him that Alice wants to exchange her share with him. He
samples his share ny, sends it back attached to n, to authenticate it and encrypted
with Alice’s key.

o Finally, Alice decrypts this last message, and sends back np and n, encrypted with
Bob’s key, to signal to Bob she has received the half key and so that Bob can check
she received what he had sent.

The final key Alice and Bob will use is the concatenation of n, and ny,.

But Alice and Bob did not dig enough for the research, and missed that this protocol
has a flaw.

Let us now say that Mallory is a state agent, from the state incriminated by Alice
and Bob’s investigation. They are tasked to interfere and retrieve the data Alice and Bob
possess. Furthermore, we assume that the secrecy of protocol design does not participate
in ensuring Alice and Bob’s key is kept secret — the protocol’s security must rely only on
the secrecy of the encryption keys. In other words, the protocol should be secure even if
Mallory knows exactly how it works.

The principle that security protocols must ensure security assuming that attackers,
like Mallory, knows exactly how it works in detail, is called Kerckhoffs’s principle [2].
It states that the security of cryptographic systems must rely solely on the secrecy
of secret values, and not on the secrecy of the mechanism itself. It has shaped the
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contemporary approach to cryptographic research.

Let us take the worst-case scenario: Mallory works for very powerful state and has full
control of the network Alice and Bob use to communicate. They can block messages and
send their own message instead, without any way for Alice and Bob to notice. We also
assume they control other actors on the network.

Mallory will communicate with Alice by corrupting another colleague of her, while
using her answers to make Bob believe he is talking to Alice. This kinds of attacks is
called a man in the middle attacks, and can be problematic: in our case Mallory is able to
retrieve Bob’s information by impersonating Alice. The attacks is presented in Figure 1.2.

-~ 1:pkm
’_____1‘ ,_____1 ,_____1
| | 25{naapka}pkm | | | |
| | ><I | 3:{na, pka}p, | |
| Alice | Mallory > Bob
| | . | wnenolpr, | |
L____ | O{nb’na}pk xl _____J IL_____J

Figure 1.2: Mallory attack. Mallory signals to Alice they want to establish a symmetric
encryption key with her (1). Alice sends to Mallory a half key n, encrypted with Mallory’s
public key (2). Mallory can decrypt Alice’s message and send to Bob the same message (3)
but encrypted with Bob key. Bob believes Alice want to establish a symmetric key with
him, and will sends back the answer dictated by the protocols (4). Mallory can forward
it to Alice, who will decrypt it for them, and send back Bob’s half key encrypted under
Mallory’s key (5).

Luckily, Alice is made aware of this attack because by continuing her research, she
found out that a researcher, Lowe, found the attack and suggested a correction to protect
against it [3]. The key idea is that using n, as proof of identity is not enough, so Bob must
follow Alice’s example, and also adds his public key to his message before encrypting with
Alice’s key. The protocol is then as follows in Section 1.1.1.

|’____ {na,pka}pkb >|,_____1

| 'l |
| | (e s K} | |
| Alice |= i Bob |
| | {nb, Na}pk, ‘l |
& e _

Figure 1.3: Needham-Schroder-Lowe protocol

Now, Mallory cannot mimic Bob response, because they cannot produce {ny, np, pkp. }pk,
from only {n,, pka}pi,, and {na, ny, pkp}pi,, having no way to decrypt the latter message
to build their own. Finally, Alice and Bob question this new protocol. The research article

4
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by Needham and Schroder provided a proof, but appears to have a flaw. How can they be
sure they are protected by this new protocol, and that Mallory would not be able to learn
their secret key through another attack?

The property capturing the fact that Bob knows the message he receives is indeed
sent by Alice is called authentication (of Alice’s identity in this case). There exist
other cryptographic procedures that ensure authentication, called signatures. Also,
in practice, such cryptographic procedures are implemented in code library, and
embedded in a larger system that already provides the security such as the one Alice
and Bob are looking for. We could quote Signal [4], that could be used by Alice
and Bob to authenticate and make their messages private. Protocols are widely
used for other purposes too. For example, the protocol TLS [5] is behind internet
authenticate and confidentiality, the protocol Belenios [6] is used for e-voting, etc.
Alice and Bob’s example serves to introduce the reader to how the research community
thinks through and tackles situations like the one of Bob and Alice. For educational
purposes we consider that Alice and Bob will build their solution by themselves,
using solely encryption.

1.1.2 Taking a step back

A protocol is a distributed system: a program whose parts run between several machines
that communicate. A cryptographic protocol is a protocol build upon cryptographic
mechanism, e.g. the encryption. These cryptographic functions are said to be the
primitives of a protocol, because they serve as basic building blocks for it.

Cryptographic protocols are widely used to secure remote communication, especially
in critical situations. In all these situations, users can legitimately ask whether the
system that supposedly ensures the safety of their data is indeed working as intended.
Hence, research tackles cryptographic protocol verification. There are two aspects for the
verifications: the primitives, and the protocol while considering primitives as black boxes,
and three layers of verifications for each. Each that could hide vulnerabilities.

o First, there can be vulnerabilities at design level. In our example, Mallory exploited
a design flaw in Alice and Bob first protocol.

e Second, primitives and protocols still have to be implemented and compiled to be
used. At this layer stands the verification that the actual programs ran by the
computer do follow the intended design.

o Finally, the context in which the devices run their codes more generally yields
vulnerabilities. The context includes specificities of the hardware but also extra
channels of information (temperatures of the computer, time of executions, cash
states, etc.) that can both be exploited to retrieve information. In the latter, these
sources of information are called side channels.

It is unrealistic to verify all in one go. Each layer separately is an entire research
area, with its specific difficulties. In this thesis, we consider the protocol dimension, at
the level of design. For the rest of this part, we concentrate on how to ensure that no
attack exploiting only the protocols design —ie that could be captured by this level of
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abstraction— can occur, while abstracting the primitives as black boxes, that we assume
safe.

All layers can hide vulnerabilities. Importantly, abstracting one part of the protocol
does not necessarily trivialize verification on the rest. In particular, abstracting
primitives and implementation can find vulnerabilities, see [7] or [§].

Still, keep in mind that some specific attacks will me missed at this level. Indeed,
on a software and hardware levels, we can quote the famous attacks Heartbleed [9]
that exploit out of bound behavior or Spectre [10], that exploits caches’ behaviour.
For works on vulnerabilities of primitives themselves, [11] is a good example.

1.2 Modelling

A mathematical proof can provide stronger guarantees to Alice and Bob that NSL can be
used safely. For that, we need a mathematical framework to model the scenario. In this
section, we first examine how to model the honest users (Alice and Bob) and the attacker
(Mallory), and then how their interactions can be expressed using their mathematical
descriptions.

1.2.1 Users, attacker model, and oracle programming language
Alice, Bob, and Mallory all three had computers to respectively execute the protocol steps
or compute their attack.

Programming language

The key question is how do we model computation? Recall that we abstract away any
hardware aspect of computers. So, very basically, computing something is executing a
program. Let us consider an arbitrary probabilistic programming language; which provides
basic imperative instruction: while loops, branching, sequences, basic mathematical
operations... i.e. enough instructions to compute anything a computer can. We model
Alice and Bob’s behaviour with programs in this probabilistic language.

Attacker model

In the modelling there is an important difference between the users Alice, Bob and Mallory.
Alice and Bob are honest users, meaning they will follow the protocol exactly as intended.
Mallory is an unknown program, that can interfere in Alice and Bob’s interaction. That
means Mallory can:

o see everything passing through the network,
o block messages
« and mimic any other agent in the network (e.g. Alice and Bob’s colleagues).

In other words, the entire network itself except for Alice and Bob is a part of Mallory,
modelled as an arbitrary program.

6



1.2. Modelling

In that case, we say that Mallory is an active attacker, and that only Alice and
Bob are trusted or honest users. We sometimes reduce the attacker capabilities on
the network to only being able to listen. In that case, we say that the attacker is
passive.

Oracle programming language

Finally, let us reconcile the two aspects of our modelling. On one hand, we have Mallory
managing the network, up to piloting when and what Alice and Bob receive. On the
other, we have Alice and Bob who strictly follow the protocol course of action: they wait
to receive a given message, run a given program defined by the protocol to compute an
answer.

We group each programs into oracles. An oracle is a function, such that when given
a message m as input, runs a program and outputs the results of the computations. We
then have three main oracles, the oracles mimicking all of Alice and Bob behaviours.

o The oracle Alicel captures Alice’s first message. Upon receiving as input a public
key pk, the public key of someone who want to initiate the protocol with her, Alice
stores pk and sends back the encryption of her half key n, encrypted with this pk.
This yields the oracle:

Alicel(pk) € x,i — pk

I‘eturl'l{na, pka }ka

o The oracle Alice2 captures Alice’s second message. She receives a ciphertext ¢, that
she decrypts with her key. She parses it as the tuple (n}, ni, pk’). Following NSL’s
specification, we should have n = n, and pk’ = pk. If this is not the case, Alice
aborts; otherwise she sends back the encryption {n{,na},r. Note that, then, the key
she derives is n, - n. This yields the oracle:

Alice2(c) def (n, np, pky) « dec(c, sky)
if n}, = n, A pkj, = xprp then return {n,n}, ,,
//Alice derives the key n, - nj

o The oracle Bob captures Bob’s sole message. He receives a ciphertext ¢ that he
decrypts with his key. He parses it as the tuple (nl, pk,) and sends back the
encryption {n}, ny, pkp}pk;. Note that, then, the key he derives is n - n,. This yields
the following oracle:

Bob(c) ' (n}, pk) « dec(c, skp)
return {n}, n, pky}pi,
//Bob derives the key n - ny,
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Also, we add an initialization oracle, that samples Alice and Bob’s secret keys and key
shares, and derives Alice and Bob’s corresponding public keys. This is the oracle:

Init() € sk, &
sk, &
Pka < pk(ska)
pkp — pk(skp)
n, &

$
Ny <

return(pk,, pkp)

The protocol NSL is then characterized by the set of oracles:

NSL € {Init; Alicel; Alice2; Bob}

The Init oracle must always be called first —to initialize all data that Alice and Bob’s
oracles need— and Alice’s second message oracle Alice2 can only be called after Alice’s
first message oracle Alicel.

Mallory is an unknown program with access to these oracles but without access to
their internal variables. In their computations, Mallory can call the oracle whenever they
want to get back what would be Alice and Bob’s outputs.

Finally, for the sake of simplicity we consider only one round of the NSL protocol.
That is, each oracle can be called only once.

1.2.2 Taking a step back

Actually, the model used here, that sees users and attacker as programs, is called the
computational model [12]. In practice, this model represents users by probabilistic
Turing Machines, one of the classical mathematical modelling of computation. Roughly,
Turing Machines are machines with memory and basic instructions to read and write in
atomic memory cells (i.e. generally one bit). Theoretically, it is enough to capture the
complex behaviour that we know of from computers. However, this level of granularity in
Turing Machines makes them very painful to work with. Programs, on the other hand,
provide a more abstract and macroscopic but equivalent view, making them more suitable
for our needs.

Another approach to this type of modelling exists, which differs in how the attacker is
represented. The symbolic model [13] focuses on a logical description of the interaction
between the protocol and the adversary, abstracting away probabilistic considerations.
It models messages using a term algebra and random values as fresh symbols. The key
difference with the computational model is that, in the symbolic, one must define the set of
adversary’s capabilities that must be captured by the algebra, while in the computational
model the adversary has any capabilities of a probabilistic Turing Machine. In our example,
a suitable term algebra should cover the encryption, decryption, pair functions to capture
Mallory’s behaviour, while in the computational model these capabilities are already
covered, as Mallory can do anything a computer can, but Mallory has also access to many
more capabilities, e.g. xor, loops, etc.

8
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In a nutshell, the symbolic model focuses on logical attacks, at the cost of restricting
the attacker capabilities more than it is in practice. The computational model goes
the other way. It keeps a realistic attacker but at the cost of having a complex
model in which protocols are expensively difficult to prove secure. Both approaches
have been successfully applied in the literature. In the symbolic, we can notably
cite major protocol proofs such as SPDM [14], EMV [15], MLS [16], etc. For the
computational model, we can cite the verification of Signal [17] or of AWS key
management [18].

The two approaches are complementary, the symbolic model is easier to use and
can scale to larger protocols, the computational model provides stronger security
guarantees. Also, the symbolic approach can miss attacks that the computational
model would not. See for example [19].

1.3 Security proofs

Now, what is left is to formulate our security property in this model. In our approach, we
leave the specifics of encryption design and implementation to other research areas, and
crucially, the encryption security modelling. It will be easier for us if we formulate the
protocol’s security property using the same formalism as the cryptographic hypothesis.

1.3.1 Cryptographic hardness assumptions

In our example, the security property of the encryption scheme is that the encryption
does not reveal anything about the encrypted message, besides its length. Cryptographers
formalize this idea with the notion of indistinguishability between games.

We think of the hypothesis as an impossibility: the impossibility for any attacker to
distinguish the encryption of two different messages.

Theoretically, we express it with indistinguishability of two games. A game is a set
of oracles that an attacker can call. We challenge an adversary to guess whether it is
interacting with game Gg or with game G;. In both games, the adversary has access to
an initialization oracle, that returns a public key pk(sk). In the first game, Gy A is also
given access to an encryption oracle. This oracle must be called with two inputs my and
m1, and returns the encryption of mg with the public key pk(sk). In the second game, Gy,
A is given access to a similar oracle, but that outputs the encryption of the second input
m1. These oracles are:

Init() ©f sk &
pk — pk(sk)
return pk(sk)

Encryptg, (mg, m1) «f if len(mg) = len(m1) then return {mg},«

Encryptg, (mg, m1) =Ty len(mg) = len(m1) then return {m1},«
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Finally, the two games are defined as the following sets of oracles:
Go def {Init; Challenge def Encryptg, } Gi def {Init; Challenge def Encryptg, }

We say that the encryption is secure if no attacker can distinguish between the two
games Gy and G1. But, formulated like this, it can never exist encryption functions that
are secure. Indeed, one winning strategy for the attacker would be to try to decrypt the
oracle output values for any possible value of the secret key. The key sk is a bitstring of
size 17, then the attacker has 2" possible keys to test. Furthermore, if it samples uniformly
different keys to test, it has a probability of % to find the key in ¢ tries. Then, with
enough time, it finds the key with probability 1. Hence, we define the security when we
restrict ¢ to be "small enough', so that the risk 57 is negligible, and acceptable for users.

The real typical attackers that will challenge the encryption security are attackers like
Mallory. The trick is to note that they only have a limited amount of time to guess the
key before Alice and Bob call, otherwise they fail.

Hence, we can make the value of n big enough so that the chances they guess correctly
in realistic time is negligible, which represents a risk Alice and Bob can agree to take.

Finally, we say the two games Gy and G; are indistinguishable if and only if all
attackers have negligibly the same behaviour in the two versions. In that case, we say
that our encryption mechanism is IND-CPA secure. More formally, the advantage
Advg, g, (A) of an attacker A against Go, G1 quantifies how much A’s behaviour differs
in the two versions, or

Advg, ,(A) = |Pr(A% (1) = 1) - Pr(A%(1") = 1)|

where A9 (17) and A9 (17) are the outputs made by A when interacting with, respectively,
Go and G;. Our encryption mechanism is IND-CPA secure if and only if the advantage
of any attacker running in polynomial time in 7 is negligible in 7. That is, the
advantage approaches 0 faster than the inverse of any polynomial in 7. This is summarized
in Definition 1.

Definition 1. An encryption mechanism is IND-CPA secure if for all probabilistic
polynomial-time adversaries A against the indistinguishability of Go and G, its advantage
is negligible in n.

1.3.2 Security properties

Finally, we can express the protocol’s security property in our model. We will mimic
the way the cryptographic assumptions are formulated, i.e. we will use a formulation
using indistinguishability of games. To that end, we need to find two games, Gy and G,
such that their indistinguishability implies that Mallory cannot learn anything about the
secret key Alice and Bob derive. That property is called key secrecy. Going back to our
running example, Mallory is the attacker, and it has access to oracles that mimic Alice
and Bob’s behaviour: the oracles Init, Alicel, Alice2 and Bob.

We need one last oracle, the Challenge oracle, to capture the security property. First,
notice that two keys are actually derived. Indeed, Alice and Bob both derive a final key.
Hence, we have two key secrecies: that of the key derived by Alice and that of the key
derived by Bob. In the attack example, it was Bob’s key secrecy that was broken, so let’s

10
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formulate Bob’s key secrecy property. It makes sense to verify this property only when
Bob thinks he is talking to Alice, otherwise, he will not use the key he had derived to talk
to Alice afterward. Therefore, we want to be sure that Mallory cannot learn anything
about the secret key n/ - np when Bob thinks he has been talking to Alice and detects no
disruption in the exchange.

Checking that Alice and Bob derive the same key is another property of the protocol,
the key agreement, that we do not tackle here.

Following the IND-CPA game intuition, we define two versions of a challenge oracle,
to be added to NSL oracles. The attacker is supposed to call the oracle with Alice’s last
message. In the first version, the attacker receive the secret key n) - n, derived by Bob.
In the second version, it receives a freshly sampled key key, independent of Alice and
Bob exchanges. In both cases, the challenge oracle outputs n/, - n, or key only under the
following conditions:

« from Bob’s point of view, he was taking to Alice, that is pk], = pk,; and

« there was not be disruption in the protocol execution: the input of challenge oracle
corresponds to Alice’s last messages. That is dec(m, sky) = (np, 1), with m the input
of the oracle.

The two games are as follows.

def
9(])VSL €
include NSL,

Challenge(m) & return if pk., = pk, A dec(m, skp) = (np,n,) then n - ny

}

def
g{VSL é
include NSL;
Init " NSL.Init(); key <
Challenge(m) ©f return if pk., = pky A dec(m,sky) = (np,n),) then key
¥

As it has been done earlier, we say that the protocol ensures the secrecy of Bob’s key if

for all attackers A, the advantage of A against g{)V SL s, g{V SL is negligible in 7.

1.3.3 Reasoning: game hops and cryptographic reductions

Finally, we have our hypothesis —the encryption games — and our proof goal. The last
question is how do we use our hypothesis to prove our goal.

11
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The usual method in cryptographic proof is to use game hopping [20]. The idea is as
follows: on the left hand, we have the game Qév 5L and on the right hand we have Q{V 5L
Between the two, we add more games to gradually transform the left game into the right
one. We then prove the indistinguishability between each transformation —the game
hops.

For our example, we introduce two more games: Qéd“‘l and g{dwl . They are both
an ideal version of NSL games, where any encryptions under Alice and Bob public keys
encrypts dummy message rather than original plaintexts.

We then chain the game hops as follows:

NSL Ideal Ideal NSL
Gy~ G~ G~ G

We thus have to prove three indistinguishabilities:

. éVSL Versus Qéde“l;

. Qédeal versus g{dwl. In these two games, the only things the adversary can see
before calling the challenge oracle are encryption of dummy messages, that does not
reveal anything on the symmetric key derived at the end.

e And Q{VSL versus Qllde“l.

Let us concentrate solely on the first proof. By contraposition of the indistinguishability
property, let us assume there exists an attacker that breaks the indistinguishability
g{)V SL L ggdml and let us call it M. The advantages of M against the indistinguishability
of gév 5L and gédwl is not negligible in . Now we have an entire program M at our
disposal to build other programs.

In particular, we can try to build a program A to break the cryptographic assumption
indistinguishability. Should we succeed, then we would have contradicted our hypothesis.
Hence, we would have shown that no such M can exist and so that no attacker breaks
g(])VSL " gédeal.

Let’s proceed that way. Let’s start running M. It will do computation on its own,
and might at some point, call on the oracles of gé\’ 5L and gédw’?. Let us say, it has
called Alicel and is waiting for an answer. We need a program that simulates it, using the
IND-CPA’s oracles. Recall that this oracle is in the Qév SL,

Alicel(pk) def Xpk < pk

return {ny, pka}y,,

Also, the Qéd"”l is obtained by replacing the encrypted messages by a dummy one
when Alice uses Bob’s public key:

Alicel(pk) def Xpk < pk

if xpx = pkp then return {dummyy, },,, else return {n,, pk}s,,

2Recall that they share the same API of oracles

12
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Let S41 be the following program

def
Sa1(pk) = Xiepr — (nay pka);
Xrigh < dummy,q;
res « if pk = pk; then call Challenge(xje f1, Xrigh:) €lse {Xie i} pi

return res

Note that S4; simulates Alicel’s response, meaning that executing S4; with game Gy
(resp. Gi1) will yield the same output as calling Alicel in the game G)" (resp. Glde!).
Our proof goal is thus to build such an S, a simulator, that acts has an interface between
M and the IND-CPA oracles, by mimicking the NSL oracles whenever M calls them.
Then, our adversary A is the full program regrouping M interfaces with S, that have the
same advantage against IND-CPA that M has against gév SE Q(I)de“l. The advantage of
A is not negligible, and so our IND-CPA assumption is violated.

However, if we look at the other oracles, there is a capability we do not have: decryption
by the secret key. That means the IND-CPA assumption was too weak for our purpose.
But we have chosen it that way to make this example easier. In practice, there are a
variety of cryptographic assumptions on encryption mechanisms. One in particular has
also a decryption oracle, the CCA2 assumption. Writing the reduction with it, however,
is very tedious. Indeed, allowing decryption oracles requires adding memory conditions in
the games: to make sure we do not decrypt ciphertext outputs by the challenge oracle, and
following the memory evolution throughout the reduction is not necessarily straightforward.

In practice, proving protocols relies on several cryptographic assumptions, and
protocols are more distant to the assumptions.

In a game hopping proof, cryptographic reductions are only one means among others
to prove a game hop. Games indistinguishabilities can also rely on other technics
like "up-to-bad’ argument [21], hybrid argument [22], etc. Cryptographic reductions
will be crucial in this thesis, that is why we used the opportunity to give a first
insight here.

1.4 Mechanizing proofs

Writing out the proofs for even this small example would take too long and be tedious. The
proof for the actual protocol seems too painful. Moreover, note that the initial protocol
that Alice and Bob were shown to be secure had a vulnerability that Mallory was able to
exploit, which the handwritten proofs failed to detect.

For all these reasons,? it can be worthwhile to have computers make all the hard work
for us — or at least assist us in doing it. And for that, we need to formalize and mechanize
cryptographic proofs and make them understandable for a computer. The question is how?

We bring to the reader’s attention that starting here the content becomes very technical.
We give in this section an overview of the formal setting this thesis uses.

3And because a teacher once said to me that a good computer scientist is a lazy one, especially if their
laziness leads to the development of an entire research area.
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1.4.1 CCSA approaches

Let us concentrate on the CCSA —Computationally Complete Symbolic Attacker— ap-
proaches to the problem. The initial CCSA approach was formalized by Bana and
Common [23] followed by other approaches either extending or revising the approach. The
ground basis of these approaches is that we always represent the joint executions of the
adversary and the honest users using terms, and the property of this joint execution
using formulae. A proof system then describes logical reasoning on formulae, whose
soundness derives from cryptographic reasoning. In this thesis, we use a highter-order
extension [24] of the original CCSA approach. For the rest of the thesis, this approach
(and its logic) will be called the CCSA-HO approach (and logic)—or solely the logic when
clear from the context. In this section, we give an overview of the principal components
and intuition of the CCSA-HO approach.

Let us first formalize the objects which we reason about. Following the previous
guideline, let us first try the joint executions of programs. Programs appear in two forms
in our model: under oracles for the honest computations of Alice and Bob, and as arbitrary
programs — the attackers.

Terms.

We use terms to describe computations and in particular messages of the protocols. This
messages can be cut into two categories: honest ones (returned by honest users, i.e. Alice
and Bob in our running example), issued from honest computations, and adversarial
ones, issued from unknown computation. For honest computation, CCSA approaches
separate deterministic computations from probabilistic ones. We use honest symbols in
terms to capture deterministic computations, while the honest randomness is regrouped
under special symbols, names, representing the random samplings explicitly made during
protocol executions. For adversarial messages, we use adversarial symbols. The only
one we introduce in this section is att, a function symbol whose interpretation is any
unknown adversarial computation (i.e. made by an unknown polynomial and probabilistic
program). This is the symbol we use to represent all of Mallory’s computation.

In this part we will describe a subset of terms, sufficient to understand the example. A
full formal description is given in the next chapter. Terms are build upon basic bricks:
names, honest symbols and att. This is summarized as follows.

t := | n with n a name symbol
| f with f a honest symbol
| att
|t ¢

Let us go back to our NSL games. Let’s try to represent messages with terms. Let skj,
skp be names, to represent Alice and Bob’s secret keys.

Then, the first message, sent during initialization, can be represented by the following
term:

tinit = (pk ska, pk skp).

14
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Imagine now that after the initialization, the attacker calls Alice’s first oracle Alicel.
To compute an input, and send this messages to the challenger, the adversary has only
retrieved the terms #;,jt. Hence, Alice’s input from the adversary is

att [tinitl

an arbitrary computation made from #;,jt. Then, let n, be a name representing Alice’s
nonce, ra; be a nonce representing the encryption randomness, and enc be an honest
symbol, representing the encryption. The terms representing the output of Alicel is

ta1 = enc (n,, pk ska) (att [finit]) ra,

representing the encryption of (n,, pk sk,) under (att [#4it]) seen as a public key.

Continuing like that, we can define the term ¢ that captures the interaction where
Mallory gets the two public keys from the initialization, then called Alice first oracle and
uses her responses to compute the input with which they called Bob, and finishes;

t = linit> TA1, 1B (1.1)
with

tin = dec (att [fnit, 2a1]) sk

tha = fst tin

tpk =snd tjy

Ip =enc (tna’ Np, pk(Skb)) Ipk B

where we let n, and rg be names, and fst (resp. snd) be an honest symbol representing a
function extracting the first (resp. second) element of a pair.

Frame encoding: recursion.

Terms can encode messages. Still, above we captured the sequence of messages seen by
Mallory in one particular sequence of calls by a sequence of messages. This is not practical,
since we would like to mechanize security proofs for any possible sequence of calls. So,
the question is: is it possible to capture arbitrary sequences into terms in the CCSA-HO
framework?

Let us go back to what an interaction with the NSL game gé\’ 5L 1ooks like. We have a
sequence of messages — a frame of messages— with input messages computed by Mallory
and output messages answered by either Alice or Bob. Each message can be represented
by a term, but the complete frame is also determined by the order in which Mallory chose
to call the oracles. Let us call a trace the data of which oracle is called when. When
interacting with NSL, several traces are possibles. Mallory can respect the expected one
for NSL, that is

(Init, Alicel, Bob, Alice2, Challenge),

but they could choose other sequence of calls, like

(Init, Alicel, Bob, Challenge)

15



Chapter 1. Introduction

where they do not call Alice’s second oracle, or
(Init, Bob, Alicel, Alice2, Challenge)

where they call Bob before Alice.

To encode the frame of messages in terms, we choose to consider that traces are
non-adaptative. That means that Mallory commits to follow a trace before their execution.
This is a restriction: in practice, Mallory could choose whom to call based on their previous
calls.

This trace-centered point of view was inspired by the symbolic model, SQUIRREL
aiming at first at bridging the gap between the computational model and the
symbolic model. Still, this point of view restrict our model in a subtle way: we prove
a result for all trace of an arbitrary, but fixed, length, while in the oracle setting, a
reduction is for all possible interactions of polynomial size.

Let us annotate the calls in traces by time-points. We then add specific time-point
symbols: let init be the initial time-point: the time when the initialization oracle is called,
also let Al, A2, B and C be the symbols representing the time-points of the respective
oracles Alicel, Alice2, Bob and Challenge — if called. Let 7, 7/, etc. be time-point variables.
Then a trace is the data needed to interpret the time-point symbols, i.e. associate the
symbols to a time-point.

We have enough to define a frame of messages. We define first special function inputygy
and outputygy, where for all 7, inputyg; (1) and outputyg; (7) are, respectively, the input
message and the output message at time-point 7. Finally, the frame of messages is a
special recursive function symbol frameygsz, where frameysz (7) represents the frame of
messages at time 7. It can be expressed as the sequence of outputygy (7), inputysz (7),
and the frame at the preceding time-point pred(r). Formally, these three functions are
mutually recursively defined as follows:

def
inputygz (init) = outputyg; (init) = frameysz (init) = empty

and for all 7 in the sequence of calls,

inputysy (1) < att(framensz (pred(7))),
framensr. (1) = (outputygy (), inputysz (7). frameysy, (pred(7))), and

outputygy (7) ' match 7 with
| Al — enc (na, (pk ska)) (inputysz (Al)) ras

| B — let n},, pk,, = dec (inputygz (B)) skp in enc (n}, np, (pk skp)) pk, r

| A2 — let n), ni, pkj, = dec (inputygy (A2))sk, in

if n} =n, A pkj, = (inputyg; (A1) then enc (ny, ny) pkj, rao
| C — let n},, pk, = dec (inputygz (B)) skp in

let ny, n} = dec (inputys; (C)) skp in

if pk;, = pk ska A nj, =np An;, =n;, then n} - np.
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Similarly, we can define framejgeq;, outputyge,; and input;,,;, corresponding to the func-
tions describing an interaction with Qéde“l. Their definitions differ from the corresponding
function for QéVSL in the encryption made by Alice and Bob’s oracles where dummy
values (dummy,;, dummyp and dummy,,) are encrypted. That means that framejgeq and
input; ., have the same definition as done earlier, and output;g,,; follows the same pattern:

it is defined for each time-point Al, B, A2 and C. For example, we have:

outputygeg (A1) % if (inputygey (A1) = pk sky then enc dummy 4y (input;ge (A1) raz
else enc (na, (pk ska)) (inputigeq;(Al)) ra1

However, one must be careful. In this ideal version of Alice’s first message, the adversary
gets the encryption of a dummy value. Hence, the decryption in Bob’s first message would
output the dummy value and not the values Alice has sent in the real version. The output
for Bob’s first message is defined as follows:

outputsgeqr(B) E let nj, pk, =
if (inputjgee(B)) =encdummy,; (input;ze,(Al)) ra1 then (ng, pub sky)
else dec (input; .. (B)) skp
in
if pk,, = pk sk, then enc dummyy pk, rg
else enc (nl, np, (pk skp)) pk, rg

The other two values outputyg,,;(A2) and outputyg.,(C) are defined similarly.

Term semantics

Notice that, the honest computations were separated between honest symbols — for
deterministic behaviour — and names, for randomness. This is done because it is convenient,
in the semantics, to make the randomness explicit — this helps to track shared randomness.
We note p = (pn, pa) a random source. It is a tuple of two random source structures:
pon, that gives values to names, and p, that captures the randomness of adversarial
computation.

Also, let us call a model M the structure that gives a trace and the interpretation of
honest symbols and attacker symbols. For example, we expect that, for our case, our
model interprets the honest symbol enc as the program that encrypts. We will see in the
next section that a model is actually a richer structure; this approximation is sufficient in
our explanation here.

The semantics of a term z, written ﬂt]]gﬂ, is then, at a first approximation, the (determin-
istic) program, that outputs the interpretation of # where names and attacker randomness
is given by p, and the attacker and honest symbols are interpreted as programs yielded by
M.

For example, let us take the trace 7~ = (Init, A1, B), in a model that interprets fst, snd,
if _then else ., and enc as expected.

The interpretation of the term frameygz (B) with M and a random source p is exactly
the one of 7 in Eq. (1.1) with M and p. Thus, the probabilistic joint execution where
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Mallory calls the oracle Alicel and then Bob before termination has the same distributions
as the program
p <;return [¢]},

In practice, the CCSA-HO logic interprets a term as a family of random variables,
indexed by n. So for a term ¢, the family of the random variables p + [[t]]g,ﬂﬂ7 for
all n. It happens that in some cases, like in our examples, these random variables
are also computable. That is that there exists a Turing Machines, or equivalently a
program, that computes them. That is why in this section we simplify the semantics
to interpret terms as programs.

Equivalence predicate and key secrecy

Finally, on top of terms, it is possible to build first-order formulae to express properties
about program computations. In particular, we have a predicate to express indistinguisha-
bility. Let ¢t and ' be terms, and Gy and G; the two following games:

Go = {Init := p &; return L],
G1 = {Init := p &; return |[t’]]gﬂ}.

We say that M |t ~ ¢’ is valid whenever for all distinguisher polynomial program D,

| I;r(@%(l’?,pa) =1) - 1;r<1>91<1'7,pa> =1) |

is negligible in the security parameter 5, where D9 (17, p,) (rep. D9 (17, p,) )is the
output of D on inputs 17 and p, when given access to the game Gy (resp. Gi).

Then the first game step to show NSL’s key privacy property can be captured by
showing that for all model M, in particular for all traces,

M | V7, frameys (T) ~ framejgeqr (7).

Cryptographic axioms

The CCSA-HO logic introduces reasoning rules, in the form of inference rules. In particular,
if we follow the hand proof of NSL, we are going to need rules to capture cryptographic
reasoning, especially rules to use cryptographic game indistinguishability like IND-CPA.
Let us try to write an axiom capturing IND-CPA assumption. Intuitively, our axiom says
that for all terms m and m’, names sk and r the formula

encm (pk(sk)) r ~encm’ (pk(sk)) r (1.2)

is valid for all models where enc is an IND-CPA encryption.

Still, one must be careful. Indeed, m and m’ are terms, intuitively computations sent by
the game adversary to the Challenge oracle. As such, they represent adversary computation
obtained without calling the Challenge oracle. Hence, beware that the key sk is secret to
the attacker, but the public key pk(sk) is sent to the attacker at the beginning. The key
cannot appear in the computation of m and m’, except under the function pk(_). Also,

18



1.4. Mechanizing proofs

r represents a fresh sampling capturing the randomness used for encryption during the
Challenge oracle call, so it must never appear in m or m’.

Capturing these restrictions can be made with syntactic conditions, and yield the
following axioms’ schema.

Definition 2 (IND-CPA axioms [23]). Our aziom scheme is then: for all (closed) terms
m and m’, samplings sk, the following inference rule is valid: That is written

len(m) = len(m")
encm (pk(sk)) r ~ encm’ (pk(sk)) r

{sk Zpx( ym,m';r L m,m’}

where

o The condition sk L,k ) m,m’ states that sk does not appear in m and m’ except
under pk(_). It is put as a condition of the rule as it cannot be expressed in the
logic.

e The condition r Z m,m’ state r that do not appear in m and m’.

e The formula len(m) = len(m’) states that m and m’ must have the same length. That
is accounting for the fact that the encryption cannot hide the length of the plaintext.

Now, how do we show that this axiom schema is sound ? Let’s take two arbitrary
names sk and r, and two arbitrary terms m and m’ respecting the condition of Definition 2,
and show, by cryptographic reduction that the indistinguishability enc m (pk(sk)) r ~
enc m’ (pk(sk)) r reduced to the IND-CPA games indistinguishability.

First, these syntactic conditions ensure that there exist two programs S, and §,, such
that for all p, M, without calling the Challenge oracle.

Si(pk(sk)) = [m], and S (pk(sk)) = [m']5

The simulators S that retrieves pk(sk) by the Init oracles, uses S, and S;, to compute
m and m’ and call the Challenge oracle on them is an adversary against the IND-CPA
games such that

8% = [lenc m pk(sk) rll and SY9t = [enc m’ pk(sk) (5

This simulator § then justifies the reduction of indistinguishability of games induced
by the formula Eq. (1.2) to the IND-CPA indistinguishability, hence proving the soundness
of our axioms in Definition 2.

In detail, let us suppose then there exist two terms m and m’ respecting the conditions,
M, that break the indistinguishability of the axiom schema. That is, there exists a
distinguished D against the associated games that has a non-negligible advantage. In that
case, the program D(S), where we interface D with S is an adversary against IND-CPA.
Besides, for all random source p:

(D(8))9° = D(89°) = D([[enc m pk(sk) r]]gﬂ’fg) and;
(D(8))9" = D(89") = D([[enc m’ pk(sk) r]",

So D(S) has the same advantages against IND-CPA that O has against our axiom,
which ends the reduction proof.
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1.4.2 Computer-aided verification

In this part, we present first the proof assistant SQUIRREL which is based on the CCSA-
HO formalism that will be central to the thesis. Then we give a quick overview of other
approaches to mechanize cryptographic proof.

CCSA-HO and Squirrel

This approach has already proven successful in handwritten protocol proofs, as demon-
strated in [25-28]. At this level of formalization, the system becomes amenable to
mechanization. Central to this thesis is the SQUIRREL proof assistant, which mechanizes
the CCSA-HO logic. In SQUIRREL, users can declare protocols as processes and apply
tactics —each roughly corresponding to one or a few inference rules— to construct proofs.
Notably, SQUIRREL includes cryptographic tactics, where each tactic roughly aligns with
the application of one cryptographic axiom. This approach has been successfully applied
to protocol verification in [24,29-31].

Other approaches

In the CCSA framework. In the CCSA framework, CryptoVampire [32] is a recent
tool designed to prove trace properties of security protocols using the CCSA framework.
Unlike Squirrel, CryptoVampire is fully automated: it proceeds by encoding the security of
a protocol as a first-order logic task, that is then discharged to first-order theorem provers
(e.g. Vampire [33]).

CCSA and related logic are, obviously, not the only approaches to cryptographic pro-
tocol proof automation. Different techniques have been used to obtain formal mechanized
proofs of cryptographic arguments.

Program logics. Techniques [34-36] relying on imperative program logics, the most
prominent one being the probabilistic relational Hoare Logic (pRHL), encode the crypto-
graphic design and security property under study as a stateful and sequential imperative
program. Then, the cryptographic arguments proving this program’s security can be
captured by program logics.

Often, these approaches embed their program logic in an expressive ambient logic, e.g.
SSProve [36] is a Rocq framework, and EasyCrypt [34] implements a higher-order ambient
logic. While Squirrel’s local logic is also a higher-order logic, its (current) global logic
is less expressive than, e.g., Easycrypt’s ambient logic, because it relies on asymptotic
rather than concrete security — though recent work [37] blurs this demarcation. This is
deliberate: Squirrel aims to capture higher-level arguments, with a focus on protocols,
which are notoriously laborious to analyse in pRHL-based tools. Because of this, past
Squirrel developments have required less mathematical libraries than proofs dealing with
crypto primitives.

Game transformations. CryptoVerif [38] directly manipulates cryptographic games
which are iteratively modified using an ad hoc set of game transformations implemented
in the tool.

20



1.5. This thesis

Property-specific approaches. There has been some number of works which aim at
automating cryptographic proofs for a fixed target security property and a restricted class
of programs, e.g. to show that padding-based encryption schemes are IND-CCA4 [39)],
to prove that block-cipher modes are IND-CPA [40] or AEAD [41], or to analyze the
EUF-MAC security of structure preserving signatures [42]. Another similar previous work
is Owl [43], which uses a type-based approach to prove reachability properties under a
fixed set of cryptographic assumptions (IND-CPA, RO, ...). The restrictions on the class
of programs, assumptions and target security properties allow these approaches to be
highly automated and efficient but restricted.

1.5 This thesis

1.5.1 Starting problem

The CCSA-HO logic creates a distance with the cryptographic games’ formalism. This
distance helps to support sometimes complex high-level reasoning into inference rules,
which lead to the implementation of the proof assistant SQUIRREL.

The drawback to that idea is that each new cryptographic argument has to be carefully
added. The legacy method for adding a cryptographic assumption in the logic and the tool
requires to design an axioms’ schema in the logic. Then proving that it actually derives
for the cryptographic assumption by cryptographic reduction, i.e. proving its soundness.
And finally, implementing that axiom schema in the proof assistant.

All the steps from design to implementation can be source of human mistakes. Also,
each step requires specific technical knowledge: good understanding of the logic for the
design, knowledge on cryptographic reductions for the proof, and developer mastering
level of SQUIRREL for the implementation. Adding one cryptographic assumption is time-
consuming, non-user-friendly, and error-prone. This has consequences for the SQUIRREL
tool. For example, because of such reasons, axioms like CCA2 were not added, due to the
complexity of its formulation.

From these problems arises the following end goal: find a systematic way to do this
work once and for all for any arbitrary cryptographic assumptions.

1.5.2 Contributions

In this thesis we explore one possible answer to that problem: develop a framework to
support cryptographic reductions to arbitrary games in the logics. Rapidly, in this thesis
we present the following contributions:

o We extend in the logic a predicate, the bideduction predicate, to capture the existence
of simulators, and design a proof system for it.

o This new proof system is used to design and prove sound a simulator synthesis
procedure, that we implemented in the SQUIRREL tool. It leads to the addition
of a single tactic in the tool, that try to reduce an equivalence to an arbitrary
cryptographic assumption expressed by two games’ indistinguishability given by the
user.
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« Finally, to test this work on several cases studies. This shows that our implementation
was able to replace legacy cryptographic SQUIRREL axioms but also support new
cryptographic assumptions. Most notably, we prove the e-voting protocol FOO [44]
using our work to support blinding and commitment hiding cryptographic hardness
assumption. It is the largest SQUIRREL proof to date.

These contributions are detailed below.

Bideduction and cryptographic assumption

The idea behind the bideduction was to have a formal way to derive the existence of a
simulator against two arbitrary games. If we go back to our example, we want a predicate
of the form

F(0,0) >g, g, (framey(t),frameq(2))

which translates as there exists a simulator 8 such that S computes framey() from the
empty term, i.e. no inputs, when interacting with game G° and computes frame; () from
the empty term when interacting with game G'. The existence of such a simulator would
then witness the validity of the formula

frameg (1) ~ framey (7).

Interestingly, the bideduction already existed in the CCSA-HO logics, but not for
simulators. The legacy bideduction predicate translates the existence of a deterministic
Turing Machine that computed the terms. In particular, these machines can do no oracles,
and no random samplings. Hence, these two aspects are at the core of this work.

o We allow for probabilistic Turing Machines. This requires careful handling of ran-

domness, that is tracking — using the symbolic constraints extra structure—
randomness ownership: which names belong to the simulator and which ones to the
game.

o These probabilistic Turing Machines are also granted access to oracles of an arbitrary
cryptographic game. We extend the predicate with Hoare-style pre- and post-
conditions to track the internal persistent state of a game, that is how the game
memory evolves upon each oracle’s calls.

We prove that this improved notion is expressive enough to derive sound axioms in
the CCSA-HO logic, and provide a proof system to derive bideducibility. The proof
system follows the structures of the legacy ones: the legacy inference rules to build atomic
deterministic behaviour are still valid. Notably, we extended it to extra behaviour — oracle
calls and random samplings and modify the existing rules to account for the fact simulators
are not inherently compositionable. Indeed, if S; and Ss are simulators, then S;(S2) is
not necessarily one. This endorses modification for the inductions and transitivity rules.

Simulator synthesis

Having established our predicate and proof system, it seems that we have the necessary
formalization to tackle proof mechanization. In the second part of this thesis, we present
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the simulator synthesis procedure that we design and implement to automatically establish
bideduction. The end goal of this works is its implementation in the proof assistant
SQUIRREL. As a result, our design is guided by the need for practicality in the tool, and
reaching the scope of legacy-implemented axioms. In particular, this procedure does not
provide completeness: we allow our implementation to fail, relying on user pre-work.

This procedure takes as inputs a partial bideduction predicate, and tries to fill the
holes to make it valid. The procedure’s core heuristically applies the proof rules based on
the structure of the terms and one particularity of this procedure is that it is also guided
by symbolic constraints. In the final procedure, this core is called in three successive
phases that derive induction invariants and memoized terms, extra terms to deduce that
will help with the bideduction, to handle inductions.

Case studies in Squirrel

The procedure was implemented into a single tactic —crypto— in SQUIRREL, that au-
tomatically proves indistinguishability goals by bideduction. This tactic is used in case
studies to replace legacy tactics with crypto in existing examples of SQUIRREL, but also
to provide proofs using new cryptographic assumptions, not supported by the tools before,
notably, the CCA2 assumption.

We develop a formal proof of vote privacy for the FOO [44] e-voting protocol in
Squirrel. Our synthesis procedure is critical to deal with the complexity of the proof. Our
security proof is based on the CCSA pen-and-paper proof of [27], which we generalize to
an arbitrary number of voters. Our proof is the most complex Squirrel proof to date, both
in terms of the diversity of the cryptographic assumptions, and in lines of code. Further,
our proof is the first computational mechanized proof of ballot privacy for FOO.

1.5.3 Related work

We compare our work to different approaches in the area of programming languages and
formal methods for cryptography.

Mechanized cryptographic reductions

Different techniques have been used to obtain formal mechanized proofs of cryptographic
arguments. In this section, we compare our work to the formal approaches presented in
Section 1.4.2.

CryptoVampire. The fully automated tool, CryptoVampire [32], relies on the standard
CCSA crypto axioms, it suffers from the issues we address in this thesis.

Program logic. Program logic approaches [34-36] are very expressive, but current tools
only support the manual application of cryptographic games: to reduce the security of a
design II to a game G, one has to explicitly write a simulator & such that IT=89. We do
not have this limitation: in our approaches the simulators are implicitly infered by the
proof system.
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Game transformations. CryptoVerif [38] is the only tool that automatically finds
cryptographic reductions without being restricted to a fixed set of built-in assumptions.
However, because of its lack of logical foundations, CryptoVerif does not support generic
mathematical reasoning. In particular, proof obligations resulting from the application
of a cryptographic assumption cannot be discharged to the user as we do, limiting the
tool’s expressiveness. Moreover, CryptoVerif can only handle assumptions of the form
(Go, G1) where Gy is a stateless game and G features monotonous state (in the form of
global write-once tables). Our approach does not suffer from such a restriction from a
theoretical point-of-view: arbitrary stateful operations can be handled by using a suitable
assertion logic.

Property-specific approaches. All the works we presented ealier which aim at au-
tomating cryptographic proofs for a fixed target security property and a restricted class of
programs ( [39], [40] or [41], [42]. or [43]) are unsuitable as general-purpose frameworks to
mechanize cryptographic reductions.

Deduction problem

The deduction problem has been extensively studied in the literature, albeit in different
settings. E.g. [45-47] study this problem in Dolev-Yao models, hence they only consider
adversaries with very restricted computing capabilities and which do not have access to
any oracles. In [48], the authors rely on a deduction predicate with a computational
semantics, which they use to prove some security properties. However, this work is mostly
interested in non-deducibility rather than deducibility, and they only consider adversaries
without access to any oracles.

Component-based synthesis

Component-based synthesis consists in automatically generating code implementing a given
target API, starting from a source API. While our problem could be reformulated in this
setting (the target API is the protocol under study, the source API is the cryptographic
game), existing CBS techniques are (to the best of our knowledge) unsuitable for our
setting, either because the code they can synthesize is too simple for our simulators
(e.g. [49,50] only support loop-free programs) or because they are test-driven and do not
provide formal guarantees on the produced code (e.g. [51,52]). More generally, while
the problem of program synthesis has been extensively explored by the programming
language community, it is usually done with different goals in mind, and under different
design constraints. We are not aware of any work allowing to synthesize recursive and
probabilistic programs interacting with stateful APIs in an automated fashion, which is
what we need here.

Security of e-voting protocols.

There exists a pen-and-paper computational proof for FOO [27] in the CCSA framework.
This proof however is restricted to a three-voters model (Alice, Bob and protocol adversary).
We authorize our protocol adversary to simulate several voters, which introduce the need
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for inductive reasoning, significantly complicating the proof. There exists several tool-
assisted proofs of security for FOO [53-55], but all of them are in the symbolic model. To
our knowledge, our proof is the first mechanized computational cryptographic proof for
FOO. There have been a few mechanized computational cryptographic proofs of other
e-voting protocols, for Helios [56], Belenios [6], and Selene [57]. All these proofs have been

carried-out in EasyCrypt [58].
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We recall the main features of the probabilistic logic of [24], which we call CCSA-HO
in this thesis.

Let us begin by clarifying what we aim to formalize. We want to express the joint
computation of probabilistic Turing machines as terms, to then formalize reasoning about
protocols. The CCSA-HO logic interprets terms as random variables, which is a more
general setting than PPTM. The transition from one setting to another is made as follows.
A probabilistic Turing machine is a Turing machine with an additional tape — a random
tape — sampled beforehand, which provides the necessary randomness. In other words,
given an input and a random source, such machines produce outputs by deterministically
computing over both.

The probabilistic logic models PPTM as random variables that maps a sample space,
the set of random tapes, to an outcome space, the computation function from input tapes
to outputs.

We used types to describe outcome spaces. For example, the type is the boolean
type, which describes the set {0, 1}. And the type — is the set of functions
that go from messages (i.e. bitstrings) to booleans.

Furthermore, in our specific case, all Probabilistic Turing Machines takes as input the
bitstring 17, with n the security parameter, an arbitrary number in N. So, for each 7, the
Probabilistic Turing Machine might have a different behaviour, depening on this fixed
input 17. In summery, terms are interpreted as families of random variables indezed by n
whose outcome spaces are defined by the term’s type.

27



Chapter 2. The CCSA-HO Logic

In this chapter, we define the syntax and semantics of terms in two steps. First, the
CCSA-HO logics build terms upon variables that represent, for example, key generation
algorithms, and black box functions, like the encryption algorithm. Then, we add recursive
definitions to the logics, like, for example, the definition of frames of messages in our
previous chapter.

After we declare outcome spaces (types, Section 2.1), and build higher-order terms
(Section 2.2 and Section 2.3), our end goal is to reason on (families of) random variables. For
example, one key notion we need for protocol verification is the notion of indistinguishability
of two random variables. The CCSA-HO logic is a first-order logic build upon terms. We
describe in Section 2.4 the predicates of this logic, in particular the indistinguishability
predicate, and give their semantics. And in the last section, Section 2.4 we define the
logic’s sequent.

2.1 Types and type structures

Recall that our goal is to represent random variables using terms. In particular, we want
to semantically describe outcome spaces. In this logic, this is done by typing. A term
of type 7 is interpreted as a random variable over the interpretation of 7. The structure
defining types’ interpretation is called a type structure.

Furthermore, in the running example of Chapter 1, in which we used keys, defined as
bit strings of length n. This highlights that our type interpretation must be parameterized
by 1 too: a program sampling a key has its output in {0, 1}"7. Thus, a type structure is a
structure giving the outcome states represented by each type for any 7.

In this part, we introduce syntax of type and the definition of type structure, along
with the semantics of a type relatively to a type structure and a security parameter.

Type syntax and semantics

We assume a set of base types B. A type, denoted by 7, is either a base type 7, € B or
— 75 where 77 and 7, are types. That is:

For example, we could define the base type for keys, which represents the bitstrings
of size n, and the base type for public keys. Then, the function that builds public
keys from secret key can be typed —

A type 7 is interpreted in a type structure M, which associates to each type and
each value of 7 a set ([ ]]1241)' In other words, each type is associated to a collection of sets
(0 ]]?M)UEN7 one set for each value of . Furthermore, this type structure is coherent with
the type constructor, meaning that for any types 7 and v, [71 = ]}, = [7 1], = [},
the set of all functions from [ ]7, to [ ]7,-

Also, it would be crucial to link the logic semantics with PPTM framework. As such,
we also assume that all base types are serialized, that is, to exist a binary representation
of the elements in the set they represent.

Finally, we require that
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o for convenience, the type is a base type and represents the singleton set, e.g. for
type structure M all security parameter 7, || ]]KAI = {0}, and

o the type , for booleans, is always a type of 2 and that for any type of structure
M and security parameter n, [| ]]& = {0, 1}.

The latter will be useful to embed a logic into terms.

Labels on types

Later, it will be convenient to express properties of types. In particular, we attach to each
type a set of labels; which restrict the type’s interpretation.
In this thesis, we use the labels:

o finite(7) when 7 must be interpreted as a finite set for all n;
o fixed(7), when 7 must be interpreted the same way for all security parameters n;

e enum(7), when 7 must be a set enumerable by the same PPTM in polynomial time
in n, for all n;

o large(7), when 7 must be interpreted as a set such that sampling ! in [ ]]Kﬂ ensures
the probability of collision between two independent samplings to be negligible. In
other words, the type is suitable for sampling secret values, like keys. This needs
further formalism to be clearly expressed, and we will come back to it later.

Remark. Note that for all type 7, finite(7) and fixed(7) implies enum(7) but also that
is enumerable in constant time, which is stronger.

Example 1. The type is labelled fixed and finite. Indeed, for alln and M, we enforced
that the interpretation of is {0,1}.

Example 2. The type is interpreted as {0,1}7. It is then not fixed but it is finite.
Furthermore, if we want the probability of sampling a given key to be negligible, this type
has to be labelled by large.

In the thesis, we will often use the types and , respectively, to represent
indices (to index family of keys, set of agents, etc.) and timestamps (time-points in a
protocol execution). They are both labelled finite.

Also, messages in CCSA-HO framework, are represented by the type , always
interpreted as the set of arbitrary bitstring (i.e. {0,1}*). Thus, we have fixed( )
but not finite( ).

2.2 Terms

This section introduces the terms related definitions. We define the syntax and semantics
of terms, which interprets standard lambda-calculus into (families) of random variables.
Particular emphasis is placed on the treatment of random sources, represented as finite
tapes, which is a key mechanism for modelling probabilistic behaviour.

1Samplings are defined in term structures, an extension of type structure for terms, see later.
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2.2.1 Variables and typing environments

We assume a set of variables X. These variables are the basic bricks on which we build
terms. To these variables, we associate typing environments. A typing environment &
is a partial map from variables to types.

Each variable will represent a random variable that samples in the type interpretations,
i.e. a function whose image sets in the type interpretations. For example, a variable b of
type will be a random variable that samples in {0, 1} for all .

We assume a particular subset N € X of variables: names. They are the symbols
that will be of used in representing the basic random variables used in our protocol (e.g.
for samplings keys). A name n € N must have a type of the form 7, — 7 where the index
type 79 must be finite, i.e. we have finite(7(). For convenience, a name n of type -
with 71, a base type will be also said to be of type

Names’ input types are finite because, as wee will see it later in this chapter, the
random source to interpret names is finite in the CCSA-HO logic.

The originally CCSA logic [23] was based on infinite random tapes, but in practice
it was always used finitely. Partly because it was only used for discrete probabilistic
reasoning and does not allow for non-terminating sampling semantics. For technical
reasons, adding highter-order [24] led to restricting the random sources to be finite.
While this finiteness might initially appear restrictive, it imposes few substantive
limitations in practice. Indeed, logical proofs are carried out uniformly across all
models. That is, when a cryptographic proof is carried on in the logic, the results is
roughly: for all models, under certain unrelated restrictions, the protocol is secure.
Then, it suffices to consider the result for a model that provides enough randomness,
i.e. a model that provides a sufficiently long random tape. This can actually be
determined. Indeed, the honest tapes’ usage can be bounded by the number of
samplings of a pre-declared protocol. The case of the adversary tape is more subtle,
however. Since the protocol attacker is modelled as a polynomial-time Turing
machine, its runtime is bounded by a known polynomial. This, in turn, allows us to
derive an upper bound on the length of the adversarial random tape’s usage.

Example 3. In order to model an asymmetric encryption function, we would typically
use types , , , and , for respectively the messages to encrypt, the secret
keys, the public keys and the randomness sources for the encryption itself, and two function
symbols pub : — and enc: — — -

The keys and seeds are represented by names. For example, let k : be a name to
represent a secret key, and r : a name to represent a seed.
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2.2.2 Term syntax and semantics
Syntax

Let’s tackle the terms’ syntax. The idea behind the syntax is to capture how we build
random variables upon basic ones. The CCSA-HO terms are A-term, that is:

to=|x

| (¢ 1)
| A(x : 7).t (where x € X)

As usual, terms are taken modulo a-renaming.
In this thesis, we only consider well-typed terms. Terms are typed in a typing
environment &, following usual rules which we omit.

Example 4. Continuing Example 3, the term
encm (pubk) r

represents the encryption of m.

Later on in this chapter, we define how the symbols enc, pub, etc. can be interpreted.
We will expect that the interpretation of the above term actually represents the encryption
of m, providing the symbols are interpreted as expected. Notably, enc will be interpreted as
an encryption.

Random sources

One specificity of terms semantics is that all terms are interpreted as random variables
which sharer their random sources.

We require that the random sources is given by the model. We extend type structures
into randomness structures M which for any security parameter 7, provides a set Ty, for
the random source.

The nature of Ty, is tailored by the need we have for the logic. We have seen in
the introduction that we aim at using terms to represent computations of PPTM (or
programs), and both honest and adversarial computations respectively share one random
source for all probabilistic behaviours. In Chapter 1, we identified two disjoint sources of
randomness. The source p is a tuple (pp, pq) Where pj; provide the randomness for honest
computation and p, the randomness for adversarial computation. So an element of Ty,
is a tuple pp, po where pj, and p, are both finite tapes of bits.

Also, our randomness structure must provide for each type — which can be sampled
from — how to encode them in bits. That is, let n be an arbitrary name with type 77 —
in &. Then, we require that any randomness structure M provides

+ A natural number Ry, (71), the numbers of bits needed to encode elements in [ ]]gAI;

« a machine w, such that, for every n € N and a € | ]]gﬁ, wn(n, a, pp) extracts, in
time polynomial in 5, Ry, (71) consecutive random bits from the honest tape pp;
and
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« a sampling machine, a machine [ 7, ]]M such that for every n and bitstring w of length
Rt (71), [[T[]]M(ln w) computes a value in [ 7 ]]M in polynomial time in 7.

Then, the interpretation of the name n by a randomness structure M with respect to a
typing environment &, is the n-indexed family of random Variables such that for any n,
the ' element is a random variable that for any tape p yields [[n ]] & obtained by feeding
the random bits extracted by wy, to the sampling machine [[n]]M That is, we have that:

[[ ]]qp dff {[[Tu]];?w - [[Tl]]g,ﬂ

a [ 12 wa (7, @, p1))

Furthermore, we require that w,(n, a, pn) and wy (n,ad’, py) extract disjoint parts of
pn when either the names n,n” or the indices a,a’ differ. Hence, we ensure that by
construction, if ny : 71 — 7 and ng : 79 — 7 are distinct names and a; € I[T[]]KAI,CIQ € [[T-_)]]?M,
the random variables p — [[n1 e gla1) and p — [[n2 e ¢ (a2) are independent. The same
holds for [n1 ]|/ (a1) and [[nl]] ¢ (a}) whenever a} i ar.

Example 5. This example explains the sampling procedures for the types bool and message.

e For the type bool, we assume Ry, (bool) =1 for all randomness structure M and
security parameter n. The sampling machine Ry, (bool) is the identity machine.
That is, for all n, and w € {0, 1}, [[bool]]%d(ln,w) is the machines that return its
mput w.

o For the type message, recall that we assume that for all randomness structure M and
security parameter n, we have [[message]]g/ﬁ ={0,1}*. We need an upper bound on
the number of bits we need to sample in this type. In CCSA-HO logic, we assume
Rua,y (message) = i, meaning we can only sample messages of size 1.

Term structure

A term structure M is the data that contains everything we need to translate terms into
random variables. It extends a randomness structure with a mapping from variables in
X to random variables. More precisely, for a type 7, let RVy;(7) be the set of n-indexed
families of random variables from Ty, to [7]7,:

def

RV (1) = {(Xphen | Xy : Tary — [7]7; for every n in N}.

A term structure M with respect to a typing environment & is the extension of a random
structure M that maps any variable (x : 7) in & to an element M(x) in RVy;(7).

This is then lifted naturally to interpret any term # of type 7 in & into ], o € RVyz(7)
in the following way. For a term 7, we write [7]7, . the " element of [[], o, and [£] "
the element [[¢]]7, o (p). Then,

[ is =M(x) () (p) (when (x: 7) € &)
[ 715 =07 15 (17157

[A(x: 7).t np =a € [[T]]M = [[t M( —17):8,(x:7)

where
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e (&, (x: 1)) is the typing environment & extended with the declaration (x : 7). Note
that x is a fresh variable in &.

o« 17 is a family (17(n’))yen of random variables such that

— for all p, 15(n)(p) = a.
— for all p and 7’ #n, 17(5')(p) is an arbitrary value in [ ]]KAII

e M[x — 17] is the term structure M extended with the association of x to 1.

The last two points are one valid way to express that we want the semantics of A(x : 7).t/
to be a function. Its semantics has to be a family of random variables such that for each
17, the 7' random variable outputs for any tape p, the function that to a value a in [ ]]KAI
associates the value [¢”]7. with ¢ equal to # where "x is replaced by a'. Then one
problem arises. The value a in a semantic value and has no counterpart in the syntax,
which means that a term like #'[x +— a] cannot be written. So we extend the model to
associates x to a and modify the typing environment accordingly in &’. But then, we are
not finished. Indeed, a term structure may only map x to a family of random variables. So,
we extend M into M’ that associates the variable x to 17, that takes value a in relevant
cases.

Builtins and local formulas

For convenience, we assume that environments declare some builtins symbols, and we
restrict ourselves to models where they are interpreted as expected. Builtins notably
include

AV, = - - - -

=TT V.3, : (1> ) — (for each 7)
and their interpretation notably satisfies:

[=-1;/s(a.a") =1 € [bool]| ] iff. a=a’ (a,a’ € [7])

v ]]gﬁ’fg(f)=1€[[ ]]& iff. f(a)=1forallace]| ]]&I

We generally omit type subscripts and use standard infix notations: we may write, for

example, Vx : 7. f(x) = x = g(x) when f : 7 — and g : 7 — 7. Hence terms of
type can be seen as formulas, which we call local formulas. The semantics of a local
formula is a family of boolean random variables in RV ( ).

Furthermore, well-founded. (<) is an additional atom of the logic which requires that

the interpretation of the binary function symbol < is deterministic (i.e. [ <] does not
depend on p) and that ([7]]},. [ <]}, ) is a well-founded set for every 7.
Example 6. Let’s go back to Example 4.
Then, the following local formula
Im.Im’ .= (m =m’) A encm (pub sk) r = encm’ (pub sk) r
states the existence of two different terms of type such that their encryption is

equal (which is generally impossible).
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2.3 Recursion

We have everything we need to properly wrap up the CCSA-HO local logic. All that
remains is to add recursion.

2.3.1 Environments and models

We extend typing environments by adding definitions. A definition is an element of the
form (x : 7 =) that to a variable x associates a type 7 and a term ¢ of type 7. Such a
term t can refer to other variables either declared or defined in the environment, which
allow defining mutually recursive functions.

We want to extend our framework to support definitions. A model M with respect
to an environment &, noted M : &, is a restriction of a term structure M where for any
definition (x : 7 = 1), we have that

[x13ze = [113ze-

The difficulty lies in dealing with recursive definitions, e.g. when x appears in its
definition ¢.

Detailing how a model can be build with respect to an environment with possibly
recursive definitions is out of space to this thesis (see [24] for details). Here, it is sufficient
to assume that to do so we need the definitions in the environment to be well-founded,
which is guaranteed by respecting certain conditions we won’t detail. More interestingly,
to rigorously define models, the authors of [24] enforces in environments and models the
existence of a symbol < in the logic itself, whose semantic is a well-founded order such
that for all models M, with respect to &, and for all n and tape p, the order | < ]]gﬂpg =<
is deterministic, i.e. its definition does not dependent on p; and is well-founded on

{(x,a) for (x : 7> 7" =Ayr)e&E,ac| ]]gﬂ}.

Example 7. Let’s define two mutually recursive functions inspired from the frames and
outputs of Chapter 1, but where we abstract away any unnecessary details.
Let hy @ int — s hy — Sty and t, : be abstract
symbols. We define hy and h, b
hy:int — = Ai.if i =0 then ty else (h, i, hy(i — 1))
hy :int — = Ai.if i =0 then 1, else hy(i — 1)
In this example, for all integer n, hy applied to n relies on the values of hy applied to

n—1 and h, applied to n. Expressing h, applied to n requires the value of hy applied to
n—1. Then, the order justifying the well-foundedness of this definition is the following:

(h,0) < (hy,0) < (hp, 1) < (hy,1) -+

2.4 Probabilistic logic

In CCSA-HO framework, we aim to capture properties of the random variables. To express
such properties, a layer of logic is added above the terms, which we refer to as global
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logic or CCSA-HO logic. In this section, we present the predicates that will be used in
this thesis, as well as their semantics. At the heart of its semantics lies the notion of an
adversary, which we define first.

PPTM, adversaries and cost model

The semantics of some global formula requires us to precisely define what is an adversary
in the semantics. Indeed, recall that one of our end goals is to express indistinguishability,
which states the impossibility for an adversary to distinguish two situations.

An adversary A is a probabilistic polynomial turing machine (PPTM), i.e. a Turing
machine which runs in polynomial time relatively to the security parameter n and the size
of its inputs and which has a dedicated read-only tape for randomness.

In the semantics, we restrict adversaries’ inputs to elements of order 0 or 1, which
corresponds respectively to base type elements or function over base type elements (i.e. of
type 71 — 79 where 71 and 79 are base types). In the latter case, we let the adversaries
call a function f on any input x for a cost of 1 plus the size of x to retrieve f(x).

Global formulae

Syntax

To avoid confusion with the local formulae, the formulae of the logic are called global
formulae and uses different symbols for logical connectives and quantifiers, e.g. global
conjunction is noted A.

Global formulae are defined by the syntax:

F ou= 1| F3F | Vx:0F |adv() | [de | [ ] t1.csta ~ 1.ty

Other connectives and quantifiers (5, V, A, él) are defined from 1,=>,V as usual. We only
consider well-types formulae (we omit the typing rules, which are standard).
Semantics

The semantics of a formula, is defined recursively relatively to a model and environment.
Crucially, the key formula for this thesis is the equivalence between vectors of terms, whose
semantics relies on the notion of being negligible in 1, that we define first.

Definition 3 (Negligible). A function f : N — N is negligible in n € N if and only if the
quantity f(n) is asymptotically smaller than n* for all k > 0.

Let M : & be a model with respect to an environment. For any formula F, we say that
F is satisfied in M : & which we write

M:EEF.
It is defined as follows:

o For any term ¢ of base type, adv(z) states that the interpretation of ¢ can be computed
by a PPTM which can only access the adversarial random tape: M : & = adv(¢) iff
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there exists a PPTM M s.t. M(17, pa) = [1]]; for allp € Nand p = (pa, ph) € Tory-
The definition is extended to terms g of type 7, — ... — 7, — 7}, in the following
way: M : & [ adv(g) iff there exists a PPTM M s.t. for any input in € Weepn i 15,
M7, pa,in) = [[g]]gﬂpa(ﬁ) for all n € N and p = (pa, pn) € Ty

o For any boolean term ¢, the atoms [f]. and [z] state, respectively, that t is exactly
true and overwhelmingly true:

M E [fle iff [¢]]F; =1foralln eN,p e Ty,
M [1] iff Pryer,, ([7]]/ = 0) is negligible in n

e Forf=ty,...,tyand 7 = t}»...,t; such that #; and #; have the same type for every
i, the atom 7 ~ 7 states that 7 and 7’ are computationally indistinguishable. More
precisely, M | 7 ~ 7 holds when, for any PPTM D, the following quantity is
negligible in n:

Pr (DA77, 0,)=1)- Pr
pETMJ,( ( [[ ]]M:S pa) ) p€TM,

TN T EAVSES)]

e 1 can never be satisfied.
o For two formulae F and F/, M: E F F = F' when if M: & E F then M : & E F’.

« For a formula F, M : & = Y(x : 7), F when for all random variable X € RVy(7),
then M[x —» X]: E(x:7) EF.

Example 8. adv(ngesh) never holds since names are sampled from the honest random
tape. We require that adv(att) holds in any model.

Example 9. For anyt : we have M | [t]e = [t] for any M, i.e. that formula is valid.
The converse implication is not valid. Moreover, [t] is logically equivalent to t ~ true,i.e.
M : & E [t] for all model M : & if and only if M : & Et ~ true for all model M : &.

Example 10. The global formulas [¢] A [¥] and [@ A Y] are logically equivalent, but this
does not hold with disjunctions.

Indeed, M : & E [¢] V [¢] states that at least M : E | [¢] or M : & | [¢]. On the
contrary, M : & E [¢ V ], states that the formula ¢ V  is overwhelming true, but it
could because for some p, ¢ holds and ¥ holds for other tapes. So it might not imply that

[o] V [¥] is satisfied.

Example 11. Finally, the following aziom scheme is valid, for any terms i, v: VxVy. [x =
y] = (4 ~ V) = (i[x - y] ~V[x > y]).

Notice that the notion of models does not force the sampling of keys to be uniform,
i.e. we can reason over arbitrary key generation algorithms. However, it is reasonable
to require that freshly sampled keys cannot be guessed by the attacker. Note that it is
the case in terms structure such that the (global) formulae [k # 7] for any name k : key,
and term ¢ that does not contain the name k, i.e. in which k does not recursively appear
and does not contain free undefined variables These conditions ensure that the random
variables [[t]]gj{;) s and [[k]]gﬂf ¢ are independent; the probability that they coincide is thus
negligible in models where keys are sampled uniformly enough in a large enough sample
space. This is exactly how we define the label large.

36



2.4. Probabilistic logic

Global and local sequent

Finally, we define the sequent of this logic and give its semantics. The full sequent calculus
of the logic will not be defined in this thesis, as it is out of scope.

Sequents are divided into two categories: local and global, which reflects the two kind
of formulae: local and global.

Definition 4 (Global sequent). A global sequent E;© + F is formed from an environment
&, a set of global formulae ® and a global formula F. It is valid if and only if A@ = F is
satisfied by all models of &.

Definition 5 (Local sequent). A local sequent E;@;T v f is formed from an environment
&, a set of global formulae ® and local formulae T" and a local formula f. It is valid if and
only if A®@ = [AI = f] is satisfied by all models of &.
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The next three chapters introduce the formalism of bideduction designed during this
thesis, and published in [59]. This chapter introduces our formalism for cryptographic
reductions. Chapter 4 will build upon it to define the bideduction judgement, its semantics,
and the rule capturing cryptographic reduction of an indistinguishability of terms to a
game. Finally, Chapter 5 introduces a proof system to derive bideduction judgements
and proves the soundness of that system. This chapter contains the definitions of syntax,
Section 3.2, and semantics, Section 3.3, for games and adversaries. They rely on our
specific notion of programs, tailored for the need to control randomness usages. To begin,
we provide an overview, Section 3.1, of the main concepts introduced in this chapter, using
a simple protocol as an example.

3.1 Overview and motivating example

Since the initial example in our introduction chapter is too complex for this early stage of
formalism development, we will use a simpler example: the Hash Lock Protocol [60]. In this
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section, we introduce this protocol, and illustrate our formalism on it. This serves as an
opportunity to present the intuition behind the formalism and its key aspects before fully
defining it in the next sections. This section starts with modelling the Hash Lock protocol
and Key Secrecy property in the CCSA-HO formalism, then defines a cryptographic game,
the PRF game, in our syntax, and provides a proof of reduction of Hash Lock Key Secrecy
property to the game by exhibiting a simulator.

The Hash Lock protocol

The Hash Lock protocol relies on a keyed hash function h(_, ), and involves participants
T, T>, ... where each T; owns a secret hashing key k; to be used across an unbounded number
of sessions. For its j'™ session, participant T; inputs x and outputs (nij, h({nij,x), k),
where (n; j, x) is a pair combining a session-specific nonce, i.e. a fresh random sampling,
and input x. It is schematized in Figure 3.1.

TRE T
[ " session ;|
X
[ S
nij <
l (ni,j,h({ni j, x), ki)

Figure 3.1: The Hash-Lock protocol

Modelling in the CCSA-HO formalism

As seen in Chapter 1, we model an execution of the protocol along an arbitrary execution
trace, given as a finite sequence of timestamps. Each timestamp in the trace corresponds
to an elementary interaction between the adversary and some participant, where some
T; inputs a message from the adversary and outputs its answer. The timestamp where
participant 7; plays its session j will be represented by T(7, j). All timestamps must be of
this form, except for the initial timestamp, noted init, and the special value undef used to
represent timestamps not present in the trace. We let pred be the predecessor function
on timestamps that are present in the trace. We finally model the execution using three
mutually recursive functions:

 input(?) represents the input provided to the protocol at time t;
e output(t) the protocol output at that time; and

o frame(t) the sequence of all outputs up to time ¢, included.

As usual, we consider an active adversary that fully controls the network: it can read,
intercept and even modify all messages exchanged by honest participants. The inputs of
the protocol are then always the result of an adversarial computation, which we represent
with the function att(_ ). Our functions can then be defined as follows for any ¢ # undef:

frame(init) = input(init) = output(init) = empty
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3.1. Overview and motivating example

frame(t) = (frame(pred(t)), output(t))

input(t) = att(frame(pred(t))) (when init < t)
output(T(ij)) = {n;,;, h({n;,;, input(T(i,j))). ki)
where undef is a special value of type representing time-points that have not

been scheduled in the execution trace.

PRF assumption and Key Secrecy

The PRF cryptographic assumption [61] on a keyed hash function h roughly states that
hashes h(_, k) using a secret key k are indistinguishable from random values. More
precisely, it can be expressed as the indistinguishability of two games Gy and G;, where
the key k is initially sampled, and the adversary is provided with two oracles:

o the hashing oracle allows computing hashes of chosen messages in both Gy and Gy;
o the challenge oracle returns the hash of its input in Gy, but a fresh sampling in G;.

To avoid irrelevant distinguishing attacks, both oracles reject inputs that have already
been used. The games are presented in Figure 3.2.

Now, we are interested in proving that Hash Lock ensures a form of key secrecy:
when outputting the hash keyed by key k the protocol doesn’t reveal any information about
k to the adversary. More formally, we would like to show that, at any point of an
interaction of the adversary with the protocol, the adversary cannot distinguish a new
hash h({n;;_j,. input(T(io, jo))), kiy) from a randomly sampled value. We seek to verify, for
an arbitrary tg = T (ig, jo) # undef and for a fresh name nfesp:

frame(pred(tp)), output(#g) ~ frame(pred(#y)), {Niy, o> Nfresh) (3.1)

To prove Eq. (3.1), we need a pseudo-randomness assumption on h: we rely on the
PRF assumption. The function h is said to be a PRF when the advantage of any PPTM
in distinguishing Gy and G is negligible, i.e. for any PPTM A, the probability

|Pr(AY° = 1) - Pr(A%" =1)| is negligible in 7.

Cryptographic reductions

We are going to prove our security property using a cryptographic reduction to the PRF
game. More precisely, assuming a PTIME adversary A against the target indistinguisha-
bility of Eq. (3.1) we build a PTIME adversary 8 against the PRF game (Gy, G1) of
Figure 3.2 such that 8 is the composition A o S of the adversary A with a simulator S
computing the terms appearing on the left or right side of the security formula in Eq. (3.1)
— depending on whether S has access to the oracles Gy or G1. Roughly, S satisfies:

S0 = (frame(pred(#9)), output(79))
891 = (frame(pred(lo)), (Niy.jo> nfresh))

Thus, A’s advantage against Eq. (3.1) is exactly B’s advantage against the PRF game
(Go, G1), which we assumed negligible.
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Initialization (Gy and G ):

k (i; ghash « []7 gchallenge — []7

Hash and challenge oracles for game Gy (b € {0;1}):

oracle hash(x) := { Chash < X :: Chash;
return (if x € {challenge then h(x, k) else zero) }
oracle challenge(x) := { ré:
v« if X € fhash U fchallenge then
if b then h(x, k) else r

else zero ;

€challenge —Xxu gchallenge;

return v }

Remark: Queries to both oracles are logged in the lists {hash and €ehallenge to avoid
repeated queries that would make the assumption trivially unfeasible.

Remark: This formulation of PRF assumption is an equivalent variant of the standard one
for PRF [61], which will facilitate its translation into a CCSA axiom.

Figure 3.2: Games for the PRF cryptographic assumption.

The simulator S is described in a slightly beautified and simplified imperative language
in Figure 3.3. On lines 2-16, S computes the term frame(pred(zp)).

Since frame is defined mutually recursively with input and output, 8 computes simulta-
neously all three functions for all timestamps in {init;...;pred(¢y)}. Concretely, S uses
three identically named arrays input, output, and frame indexed by timestamps, which are
being filled by the for loop starting on line 2, following the recursive definition of input,
frame and output.

To fit with the probabilistic handling of names in the logic, the simulator’s and
game’s randomness is early-sampled: the simulator and game both have access to tagged
random tapes from which they extract their random values; these tapes are implicitly
sampled before the execution starts. On line 7, the simulator performs a random sam-
pling n <-Tg[offset,(i,j)]: this actually reads an early-sampled random tape at a position
determined by the tag Ts (indicating a simulator sampling) and an offset associated to the
name n; ; being simulated.

Our notion of oracle call is also adapted to fit with the logic. On line 9 the simulator
computes h({n, input[t]), k;,) using the oracle call

G.hash({n, input[ t])) [offsetc(ip)].

In addition to passing the message to be hashed as an argument, the simulator specifies
here where the oracle should read the key: although this value is usually understood as
being sampled when the game initializes, this is irrelevant in our early-sampled semantics;
of course, our model will forbid that the simulator calls oracles with inconsistent values
for the key’s offset, and the simulator cannot read the random tape at this position. This
unusual setup will be useful, again, to help track the relationship between the samplings
and the names that are being simulated.
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1 (* Recursively compute input, output and frame using the hash oracle. *)
2 for each r € [init; 7] {

3 match ¢ with

4 | init — input[f] < empty; output[t] « empty; frame[t] « empty
50 [ T(i)) —

6 input|[f] < att(frame|pred ¢])

7 n < Tg|offsety(i,j)] (* pre—sampled value access x)

8 if i =g then {

9 x «— G.hash({n, input[t]))|offsety(ip)] (* oracle call x)
10 } else {

11 k < Tg|offsety(i)| (* pre-—sampled value access *)

12 x < h({n, input[z] ), k)

13 }

14 output[t] < (n, x)

15 frame[t] « (frame[pred ¢t], output[z])

16 }

17

18 (* Use the challenge oracle to compute output(ty) or (nj,, j,» Nresh) - *)
19 input[zg] <« att(frame[pred 79])

20 n & Tg[offsety (ig, jo)] (* pre—sampled value access *)

21 output' < (n, G.challenge({n, input[to] ))[offsety(io); offsetn., )] )
22 return (frame|[pred #g], output')

Remark: The test that the input ¢ is not undef is implicitly made by the test : ¢ € [init; 7o].
The segment contains only defined timestamps.

Figure 3.3: Reduction to the PRF assumption.

On line 18, frame[pred(#p)] has been properly computed and can be used to compute in
output' a value which will be output(#g) on the left and (n;, j,, Nfresh) on the right. This is
done using the challenge oracle G.challenge, passing the offsets for the key and the fresh
sampling. Crucially, the call to the challenge oracle returns the expected value because the
input {n;,_j,, input(fp)) has never been queried to the hash oracle, except with negligible
probability. Indeed, the hash oracle G.hash has only been queried on the values in:

HE {(ni.input(n)) | £ = T(i.]) < 1o}

and the probability that a collision occurs between (n;, j,, input(fg)) and a value in H is
bounded by:

|7‘(| X Pr(nio,jo = n,-,j) (fOI" (laJ) # (iO’jO))

This is negligible since H is a set of constant size w.r.t. n, and since the names n;, ;, and
n;; are independent uniform random samplings in an exponentially large set.
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3.2 Syntax

We will now present our formal definitions of cryptographic games and adversaries. The
two concepts are based on the concepts of expression and programs. We will define these
first. As we have seen, we use a slight modification of the standard cryptographic concepts
to facilitate the relationship between logical and computational sampling.

3.2.1 Expressions and programs

Both games and their adversaries rely on the notion of programs. Programs will be used
to define oracles in games and adversary code for adversaries.

Expressions

We assume a set of program variables X, and an intrinsic typing associating to each
variable v € X, a base type — we do not need a higher-order programming language. The
library of our language, denoted by Lp, is a set of typed function symbols disjoint from
X, representing built-in functions shared with the logic — i.e. we will have £, C &. We
assume that £, contains at least the standard arithmetic and boolean operations (e.g.
0,-+-,if - then - else -, true, false).

Also, we assume that these built-in functions are of order 0 or 1 and have PPTM
representation. That means that for any model with respect to L,

 for any symbol s of type 71, in Lp, there exists a PPTM M such that M(17, p,) =

UV
[s]i;e ; and
o for any symbol s of type 71 — --- 7, — 7, there exists a PPTM M such that for all
inputs my, - ,my, in the serialized set of [71 [ x -+ - x [t ]]/,

M(ln’mla' o »mn’pa) = [[g e

Mxp=1,0, =10 1:8 (7)) (Xn:7n)

for all n, for all model M and all logical tapes p = (pa, Ph)

Definition 6 (Expression syntax). We form well-typed expressions from Xp, Lp, and a
special constant b of type . This constant will denote the side we are in when describing
a left or right cryptographic game. Formally:

e1,...,e, EExpri=eiea |V ]| f|b (velX,, feLy)

Randomness tagging

Following the logical semantics, it will also be useful in programs to keep track of random-
ness origin. To this end, we use tagged random samplings from eagerly sampled tapes.
This translates in the program’s syntax by the usage of tags. The programs’ syntax is
then defined relatively to an arbitrary set of tags Tag.

In practice, we use a specific set of tags, designed for game adversaries, defined in the
following section.
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Ply...,Ppii= Ve | skip
| v & Tle] | p1; P2
| v« 0¢(€)[ég; €] | if e then p; else p2
| abort | while e do p

Figure 3.4: Syntax of programs.

decl var =V e (v € Xp, e € Expr)
decl_sample = v & (vedXp)
decl oracle ::=oracle f(v) := {decl sample®; p; return e}

€0, v € X!, e € Expr, p a program
p

decls ::= decl_sample®; decl var®; decl oracle”

Figure 3.5: Syntax of games defined over oracle names O.

Programs

In this thesis, we use a standard While language for programs. However, to model game
adversaries, we need specific operations that do not usually appear in a While language:
random samplings and oracle calls. As illustrated with the simulator of Figure 3.3, we
follow a style that fits well with our logic.

The full syntax is given in Figure 3.4.

The instruction v ¢ T[e], where v : 7 € Xp, T € Tag, and e is of type int, samples a
value of type 7 using the randomness from random source T read at offset e, and stores it
into v. The instruction v «— Of(e)[ey; €] is an oracle call, where the variable v receives
the call’s result, f is the oracle being called, € are the oracle inputs, and €y, €; have type
These integers let the program control the offsets at which the oracle reads its randomness
for, respectively, global samplings and local samplings.

For both expressions and programs, we assume a standard type system (whose rules
we omit) and only consider well-typed expressions and programs w.r.t. X, and L.

3.2.2 Games

Cryptographic games set up some data (e.g. randomly sample keys) and provide function-
alities through oracles to compute over this data, possibly changing it. Computations
performed by oracles are described by simple programs, which is a program without the
adversary’s specific features — random sampling and oracle calls.

As explained before, we are interested in pairs of games (Gy, G1) that are assumed to
be indistinguishable; such pairs will be described by a single game G using the special
variable b, i.e. G; is obtained from G when b =1.

Definition 7. A game G = (O, decls) is a finite set of oracle names O, and a sequence
of declarations decls according to the syntax given in Figure 3.5. Declarations contain, in
order, sequences of:

1) initialization of variables, either:
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g . ey 7. .
o Vg <, which initializes the global random variable v, ;
e orv « e, which assigns the evaluation of expression e to v.

We let G.gs be the set of all initialized random variables.

2) oracle f(v) := {vl1 LI vé & p; return e}, which defines an oracle f € O with
inputs v that initializes a sequence of local random variables vll, e vi, then executes a
simple program p and finally returns e. We assume that p never modifies the values of the
random global variables (e.g. vo above), and the random local variables of any oracle (e.g.
vll, . ,vi above).

We require that a game provides a single definition for each oracle name f € O. Given
one such definition, we let:

def def

f.args = ¥ flocg = (vll,...,vi) f.prog def aef

p f.expr = e
We also let f.globg be the vector of all global random wvariables that are used in the
oracle f.

The PRF game shown in Figure 3.2 is an instance of this notion of game.

The restriction to simple programs in the oracle body — those that do not perform
random sampling or oracle calls within — is not very limiting in practice. To our
knowledge, most standard cryptographic games conform to this structure.

3.2.3 Simulators and adversaries

A game simulator S is syntactically a program, built for a specific set of tags: Tag =
{Ta, Ts, T¢}. All tags represent a source of randomness that can be used during the
execution of S:

e T, is for random samplings performed by S that will correspond to samplings in p,;
e Tg is for random samplings by S that will correspond to samplings in pp;

o T is for the game (oracle) randomness that S cannot directly access, and which will
correspond to samplings in py,.

An adversary is a simulator which also has restrictions. Indeed, it also needs to handle
randomness "correctly”, and to be polynomial-time. Notice that in our syntax, the program
itself — here, the adversary — controls the randomness offsets, but should not be able
to read nor write these random bits itself. In particular, we distinguish the global offsets
¢, used for the global random variables of the game from the local offsets ¢} used for the
local random variables of the oracles. As each oracle call must use fresh randomness for
local samplings, our semantics will forbid the adversary from re-using local integer offsets.
Similarly, global offsets will have to be consistent from one call to the next, as the game’s
global variables must be sampled only once.

Hence, the notion of adversaries is a semantical notion that we define later in section
Section 3.3.5.

IThe emphases are on "random" in this part: the program can modify global variables that are not
random, such as logging list, for example.
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P, def
iy () = {eta s 7}

1P def i np
Minieng (G) = Hinigyr (decl_varsg)
i (decls;v = e) € (v e)" where p = uly,]; (decls)

Figure 3.6: Initial memory of a game G w.r.t. Ml and side bit i.

3.3 Semantics

The semantics of a program interacting with a game will be parameterized by a model M
of L, specifying the semantics of types and library functions, the values of the security
parameter n and the side b, a program random tape, and a memory. We start this section
by defining memories.

3.3.1 Memories

A memory p € Memy,, w.r.t. a type structure M and 5 is a function that associates to
any variable v € X, of type 7 a value u(v) € [ ]]K,jI As usual, u[v + a] is the memory
such that (u[v +— a])(v) =a and (u[v — a])(v') = u(v’) for any variable v/ # v.

Definition 8 (Initial Memory). The initial memory yinit&”(g) of a game G for the
security parameter n, program random tape p, model M and side bit i € {0,1} is defined
i Figure 3.6. It is obtained by evaluating the deterministic global variable assignments.
Moreover, the value of the security parameter is made available to the game and the
simulator through the variable eta. Global random variables are not in this initial memory;

they will be sampled by directly reading the random tape when needed.

3.3.2 Program random tapes

To fit with the logic, all the randomness of our programs is eagerly sampled and passed to
the program using read-only random tapes. We limit ourselves to sampling base types.

To sample a value of base type 71, we retrieve a vector wg of Ryi,(7,) bits from the
random tapes, and then use the sampling algorithm [ ]]&(77, wg) provided by the model
to obtain a value in [7,]7,. To simplify the presentation and analysis of the bideduction
logic in the following chapters, we use a different random tape for each usage: we will
use a family of random tapes, one for each pair (T, 7,,) of randomness source (i.e. in our
particular case, T € {Ty, Tg, Ts}) and base type 7, € B we are sampling from. However, we
only consider for T, since adversarial randomness is only needed for the adversarial
function symbols in L.

Definition 9. A program random tape p is a family (p|))eL of infinite sequences of bits
indexed by the set of labels:

LE {(Ty, bool)} UU., e {(Te, 1)} U {(Ts, 7))

For any tag T, we split plr . into blocks of Ry, (7) bits, and for any k € N, we let pl;’M[k]
be the k' such block. We may omit M and v when they are clear from the context.
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def . def

[b]g/}[piu = [V]&i’,u = 4(v) whenv € X,

def (9l 001-£0) def ,
15, ™ when fe £y eveall € ealifh, (leal] )

Figure 3.7: Semantics of expressions w.r.t. a model M : &.

Finally, we let B be the set of all program random tapes.

3.3.3 Expression and program semantics

We have defined all the key elements that make up our semantics. We start with the
semantics of expressions, then move on to programs.

Expression semantics

We say that a logical environment & is compatible with the set of program variables X, and
library L, if £, € & and the set of variables defined or declared in & is disjoint from Xp.
The semantics [e]gﬂ’[’;’# of an expression e of type 7 is a value in [ ]]]ZAI This semantics is
evaluated relatively to a memory u, a model M : & such that X, £, and & are compatible,
a security parameter n, a program random tape p, and a bit i € {0, 1} stating on which
side the expression is evaluated. The semantics of expressions, defined in Figure 3.7, uses
the bit i to interpret the special boolean term b, and the memory u to evaluate program

variables in Xp. Moreover, the semantics of a library function f € L, is

7] p def [[f]]ﬂ (p|TA ,PO)

M i
i.e. the (logical) semantics of f in the model M, using p|r, hool as adversarial (logical)
random tape, and the all-zero random tape pg as honest random tape — indeed any

library function £, will be assumed to be adversarial, and therefore does not need honest
randomness.
We omit M and i when they are clear from context, and write [e]Z’p instead of [e]&ﬂ#.

Program semantics

The semantics of a program is parameterized by the game G that the program can interact
with, a model M : & (such that X,, L, and & are compatible) used to interpret library
function symbols, the side bit i € {0, 1}, and the security parameter n. The evaluation
GPDZ,?MJ,# € Memyy,, U{L} of a program p in memory i and using the program random tape
p is either the memory obtained by executing p, or L if the execution does not terminate.
Its definition, given in Figure 3.8, is mostly standard; we describe next the treatment of
oracle calls and samplings.

If v is a variable of type 71, then the evaluation of the random sampling v € T[e]
w.r.t. memory p and program random tape p evaluates the integer e as an offset k € N,

retrieves the k-th block of random bits pl” )[k] from the random tape labelled by (T, 7},),
and uses it to run the sampling algorlthm I ]]M provided by the model M.
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(v —e)}? & plv - lelh”] (abort)’” def ) (skip)/* def u
(po: pr)?? & (pa)7? it (po) i = 1/
’ : 1 if quDZp =
n,p f n,p — t
(if e then py else p;)%” def (]POD#p 1 [e]ﬂp rue
(p1)i” if [e]}” = false
) o odef .. ,
(while e do p[)Zp = lim (]looanZp

(if e then p else skip)”; )

here 1 =
where loop,, (if e then abort else skip

(v & T[e][)Z’p = u [v - ]]%AI(U, p|?T )[k])] where k = [«e]Z’p and v has type

f.args — [€]F°

- - - df 7 - Y .
v —0s@)eg; )" = let ' = p|f-globg = plg [[&]i"]] in
flocs — pll [[e]]"]

let 1" = (f .prog[)Z’/p in

w v [f.expr]Z’,‘,3

Figure 3.8: Program semantics w.r.t. a model M : &, a side i € {0,1} and a game G.

To evaluate an oracle call instruction v <= Os(e)[ey; €7], we first evaluate the arguments
¢, the global randomness offsets €, and the local randomness offsets €;, and store the
results in, resp., f.args, G.globg and f.locg; then, we execute the oracle body f.prog; and
finally, we store the result of the evaluation of the return expression f.expr in v.

Turing completeness

Let us finish on one remark about our programming language. It will be essential later
to bridge the gap between two formulations of indistinguishability: the one based on
adversaries expressed with programs (in our setting, see later on), and the other based on
PPTMs in the equivalence semantics, define in Section 2.4.

For that, we made sure our syntax defines a Turing-complete programming language.
This means that it can express any computation that a Turing machine can perform,
assuming the model and environment provides certain minimal features: a library with
bit-wise operations and a dedicated type for bits, interpreted as binary strings. So we
assume the library does provide bit-wise operations, and notice that the type
already defines bitstrings. Then, all Turing machines can be expressed as a program in
our setting.

In particular, for any PPTM D, there exists a program p that only accesses the program
tape (Ty, ), such that for any infinite random tape p, and bitstring w, the PPTM D
and program p perform the same computation, that is

D, P) = (P)1g, sy 7S]
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where p is any family of tapes such that p|r, o0l = p-

3.3.4 Cost model

To keep our approach generic and abstract, we assume that our program semantics is
endowed with a time-cost model satisfying some standard and expected properties.

More precisely, we assume a cost function C parameterized by the model M which
associates to each program p, the security parameter n and memory u a worst-case
execution time Cyi(p, 77, #) € N U {+00} which bounds execution times of p for all possible
program tapes — this cost must be +oo if some execution does not terminate. Also, in the
following part, it will be useful to restrict the cost to subset of u. Thus, we say that p has
inputs X when all variables that the program read before defining them are in X. Then
for any n and memory pu, the worst case execution time Cy(p, 7, p) is exactly the worst
case execution time Cy(p, 7, [)? — ,u()?)]]?

We say that a program p is PTIME w.r.t. M when Cy(p,n, ) is bounded by a
polynomial in  and |u| (the sum of the sizes of all values stored in u). We will assume
only a few basic properties of this cost model:

o all expressions are PTIME, which is reasonable, as sampling procedures provided by
the model are PTIME, and since library functions are assumed to be adversarial,

o the memory after executing a PTIME program is of polynomial size in n and the
size of the initial memory;

o an oracle call is PTIME, which is both a constraint on the cost model and the game;
o if both p and g are PTIME programs, then so is (p; q);

o while [ # [] do (p; [ « tail [) is PTIME provided that p is a PTIME program that
does not modify variable /, in all models where tail induces a well-founded ordering
on the semantic values of type list and when

— either the size of [ and of its element is bounded by a constant;

— or for any memory u, the cost of p is bounded by a polynomial in only n and
the size of [ and its elements in u.

We distinguish two cases for PTIME while loops. The first case is very restrictive:
we will use it when we build while loop where the program p can reuse any previous
computation. This is particularly useful for induction. The second case applies when
the program does not reuse previous computations. It will be useful to lift some
restrictions on the list when possible. See Chapter 5 for details.

2All our programs may also uses special variables b and eta that we omit in the cost.
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3.3.5 Adversaries

A program p has an adversarial behaviour against G with respect to a memory u, a tape p,
iff. it only calls the oracles of G, respecting their type. Moreover, an adversary must not
read the special side constant b, and must not read or write the game variables. Finally,
the program must properly use random samplings, when executing in M, with the security
parameter n, the memory u and the tape p:

o We forbid the adversary from directly sampling from the Tg-labelled random tapes,
which are reserved for the game’s random samplings.

o We require that local offsets in oracle calls are fresh: an integer used as a local offset
may not be used anywhere else as an offset, in this oracle or in a past or future call.

o We require that global offsets are consistent across all oracle calls: each of the game’s
global samplings must correspond to a unique global offset.

Also, we extend this notion to inputs, and say that p with input variables X has adversar-
ial behaviour w.r.t. M, n, u, d, p when it has adversarial behaviour w.r.t M, n, ,u[)_f - dl, p.

An adversary against G (or G-adversary) with respect to M and 5 is a program which
has an adversarial behaviours with respect to M, n, p, /‘lfnitgﬂ,[p for all tape p and side i.

3.3.6 Adversaries and security

Finally, it is possible to define the security of a cryptographic game.

Definition 10. We use a special variable res to store the return value of a program. A
game G 1is secure in a compatible model M if for any PTIME adversary p, the following
quantity is negligible in n:

| Pr, (qug?MLO,,u() [res] =1) - Pr, ((]ngE\/ﬂ’w1 [res] = 1)|

i P

where p; = i, o+ for any i € {0,1} is the initial memory of the game.
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In the previous chapter, we introduced a formal framework for expressing cryptographic
reductions. We defined programs, games, and adversaries with precise specifications. In
this chapter, we define the bideduction judgment, where these latter elements form the basis
for its semantics. More precisely, this chapter formally describes how our approach allows
to synthesize a simulator by significantly extending the notion of bideduction introduced
in [30].

We start the chapter with an overview, following up on the overview in Section 3.1, to
help build intuition on the deduction judgement and its key ingredients. In Section 4.2,
we then define the key notions of constraint systems, assertions and related notions, and
use these definitions to define the bideduction judgment. However, for the sake of clarity,
we defer the rigorous definition of well-formedness of constraint systems and associated
proofs in Section 4.4 and use only an intuitive understanding in Section 4.2. In a second
section, Section 4.3, we provide a full definition of the inference rule linking biduction and
CCSA-HO equivalence, the BIDEDUCE. Its soundness proof is also deferred in Section 4.4.
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Chapter 4. Bideduction

4.1 Overview

We begin this chapter with an overview to provide intuitions and first insights into the
formal definitions and notions that follow. In the previous chapter, we introduced an
example (see Section 3.1) to illustrate how our formalism represents games, simulators,
adversaries, and cryptographic reductions. First, let us present what is a (mono-)deduction:
we say that terms v can be deduced from terms u if there exists a polynomial-time simulator
S such that S(u) = V.

The goal of this overview is to provide an intuition for the key extension to mono-
deductions: bi-objects, constraint systems and pre-and post-conditions, explaining what
they represent, why they are needed, etc. The section ends with the bideduction rule, which
captures how a term indistinguishability can be justified by a cryptographic reduction to
a game indistinguishability.

Bideduction. In bideduction, the initial knowledge & and the target v are replaced
by pairs of vectors of terms, respectively #(ip; 1) and #(Vo; V1), called bi-terms, which
typically represent messages in the left and right scenarios of an indistinguishability. We
use a dash # to distinguish the pairing of the left and right scenarios from the standard
pairing that can appear in the terms iy, it1, Vo, V1. For example, the indistinguishability
in Section 3.1:

frame(pred(tp)), output(tg) ~ frame(pred(zp)), (i, j» Nfresh) (4.1)

can be represented by

#(frame(pred(tp)), output(zg); frame(pred(tp)), Ny, jy» Nfresh))

or, alternatively,

frame(pred(#o)), #(output(Zo); (Niy,jo» Nfresh))
by factorizing common parts of the left and right terms. Informally, we say that #(iig; 1)
bideduces #(Vg; v1) with access to the pair of games (Go, G1), which we write

#(to; 1) >(go.g1) #(V0; V1)

if there exists a single polynomial-time simulator S such that S9 (iiy) = ¥y and S9'(if1) =
v1. The cryptographic reduction argument of Section 3.1 is captured by the rule:

0 >(Go.61) #(V0; V1)

Vo ~ V1

BIDEDUCE (4.2)

To prove the soundness of this rule, assume that its conclusion is false. Then the
adversary A against vo ~ v} can be composed with the simulator S witnessing 0 >(g, g,
#(vo; v1) to obtain an adversary 8 = A o S against the games (Go, G1). Thus, S is a
sub-procedure of the adversary 8 against the cryptographic game (Gy, G1) we are reducing
to — this is why it is crucial that the same simulator S is used for both sides of the
bideduction judgment. Keep in mind that the bideduction premise requires an empty
input: non-empty inputs #(uo;u1) will be useful later, e.g. to support transitivity and
inductive reasoning steps in our proof system for bideduction.
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4.1. Overview

1 (* Recursively compute input, output and frame using the hash oracle. *)
2 for each r € [init; 7] {

3 match ¢ with

4 | init — input[f] < empty; output[t] « empty; frame[t] « empty
50 [ T(i)) —

6 input|[f] < att(frame|pred ¢])

7 n < Tg|offsety(i,j)] (* pre—sampled value access x)

8 if i =g then {

9 x «— G.hash({n, input[t]))|offsety(ip)] (* oracle call x)
10 } else {

11 k < Tg|offsety(i)| (* pre-—sampled value access *)

12 x < h({n, input[z] ), k)

13 }

14 output[t] < (n, x)

15 frame[t] « (frame[pred ¢t], output[z])

16 }

17

18 (* Use the challenge oracle to compute output(ty) or (nj,, j,» Nresh) - *)
19 input[zg] <« att(frame[pred 79])

20 n & Tg[offsety (ig, jo)] (* pre—sampled value access *)

21 output' «— (n, G.challenge(({n, input[#o] ))[offsetk(io), offsetn, ., )] )
22 return (frame|[pred #g], output')

Figure 4.1: Reduction to the PRF assumption (copy of Figure 3.3).

We anticipate some elements of the next chapter on the proof system, as some com-
ponents of the bideduction judgment are designed to allow to build a proof system. In
the following, we present a selected set of rules, where we omit the games and write >
instead of (g, g,), and where bi-terms will be written with bold fonts e.g. @, ¥ and w are
all bi-terms.

A key goal while designing the bideduction judgment is to ensure that the judgment
is composable, which is reflected in the proof system we aim at. Our proof system is
a collection of rules capturing atomic simulators (samplings, oracle calls, assignments,
etc.) and rules to compose them. Concretely, composition of simulators takes the form of
transitivity rule that allows to transform a bideduction # > ¥, w into a bideduction of ¥
followed by a bideduction of w with ¥ as additional input:

Coming back to Figure 3.3, reproduced here as Figure 4.1 for the reader’s convenience,
such rules will allow combining the simulator S; (lines 2-16) of @ > frame(pred(#y)) with
the simulator Sy (lines 19-21) of frame(pred(#p)) > #(output(2g); (N, jo> Nfresh)) to obtain
the full simulator of Figure 4.1 which proves the equivalence in Eq. (4.1).

We must characterize the conditions under which the composition of 8§ and S is an
adversary against the game. This introduces two challenges:

» managing randomness consistently across composed simulations, and

« tracking the game’s state accurately through sequences of oracle calls.
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Chapter 4. Bideduction

Randomness usage. The atomic simulators we want to capture in the proof system
include random sampling and oracle calls. First performing a random sampling for a name
n;, is captured by the following rule:

ﬁl>nl-

For example, this rule allows us to infer the three pieces of simulator line 7, line 11 and
line 20 in Figure 3.3.
Furthermore, the oracle rule allows the simulator to call any oracle of the game
G € {Go, G1} on any input it can compute. For instance, in the case of the hash oracle of
the PRF game of Figure 3.2
uvsvy
u>h(, k)

which intuitively says that if one can simulate an input ¥, one can simulate the output of
an oracle calls on ¥. This is the rule justifying the oracle call on line 9 of Figure 3.3.
The addition of these rules creates two issues:

i) We should not be able to use the oracle rule twice on two different keys k; and k;,
since the PRF game only supports hashing with a single and fixed key.

ii) We should not be allowed to sample a name in the simulator (through the name rule)
and use this name to represent a sampling in the game (through the oracle rule).

We solve these issues by equipping our bideduction judgment with a system of name
constraints that allow us to track the usage of randomness by the simulator. Our constraint
systems notably allow us to express: consistency conditions on the secret keys of the
game, ensuring that oracle calls are always asked to use the same offset for the same secret
key; ownership of random samplings, preventing the simulator from directly accessing
random values that are used as secret keys by the game. Concretely, constraint systems
are recorded in bideduction judgments, and their validity is deferred until the end of the
bideduction derivation. Roughly, the name and bideduction rule BIDEDUCE roughly look
like this:

F Valid(C) C; 0> #(vp; v1)

{(ni, Ts)} Fa > n; Vo ~ V1

Here, (n;, Ts) records that n; has been sampled by the simulator, and Valid(C) is a standard
SQUIRREL formula ensuring that the constraint system C is valid.

Stateful games. Recall that the oracles of the PRF game are guarded by conditions
involving the logs {hash and fehallenge. E.g., the value (n;y;,, input(T(io, jo))) sent to the
challenge oracle at the end of the simulator (line 21 of Figure 3.3) must not have been
already queried to the hash oracle hash. As discussed in the previous section, proving
this requires establishing a property on the game’s internal memory, namely that the set
of previously hashed values is of the form:

{{nij,input()) | 7= "T(i,]) < T(io,Jo) }
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4.2. Bideduction judgement

To account for that, we equip our bideduction judgment with a Hoare-style pre-condition ¢
and post-condition ¢ to track the memory state of the game. Putting everything together,
we shall use bideduction judgments that are roughly of the form:

C, (@, ¥) F #(to; 1) >(go.g1) #(V0; V1)

Informally, this judgement states that there exists a simulator S using randomness as
prescribed by the name constraints C such that, for any i € {0; 1}, the execution of S on
input #; starting from a game G; in the initial state satisfying ¢ computes ¥; and leaves
the game G; in a final state satisfying .

The notion of bideduction we introduce in this chapter supports simulators whose
capacities go beyond what was possible using the basic bideduction of [30]. In
particular, we consider simulators that are probabilistic programs with access to
stateful oracles. As shown in the example presented above, supporting these features
requires extending bideduction in two non-trivial ways: we record the randomness
usage of the simulator using name constraints (see Section 4.2.1) and we use Hoare-
style pre- and post-condition to track the state of the game’s internal memory (see
Section 4.2.2). While the latter extension is standard in program logic, the former
is a novel contribution of this thesis.

4.2 Bideduction judgement

We now develop our central concept: bideduction in presence of a cryptographic game. We
will deal with several pairs of objects where each component is involved in the deduction
on one side i € {0, 1} of the games. We introduce special notations for such pairs, following
the style of [38].

Definition 11 (Bi-objects, u, #(_;_)). We call bi-term a pair of terms u = #(up; u1). We
will similarly define and manipulate several kinds of bi-objects: for instance, we call (local)
bi-formula a pair of local formulas f = #(fo; f1). We allow ourselves to factorize common
parts of a bi-term (or any bi-object) by pushing the # downwards: e.g. f(#(u;v), g(#(s;1)))
denotes #(f (u,8(s)); f(v,8(2))).

Finally, for a bi-element e = #(eq; e1), eq is called the left element of e, and ey the
right element of e and for any bi-element e, eq will always refer to its left element, and ey
to its right element.

We shall follow the intuitions given in Section 4.1, and derive a formal definition of
bideduction for which we can prove that bideducibility entails indistinguishability. We
begin by introducing two necessary preliminary ingredients: constraints on the use of
random tapes, and assertions for describing the game’s memory at a point in the simulator’s
computation.

4.2.1 Name constraints

Our simulators can perform random samplings, either directly or indirectly through oracle
calls. Names in the bideduction judgement will be used in both cases to represent such
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computations. For example, in the PRF game using key k, a simulator may compute h(m, k)
through an oracle call (assuming that m is computable) but it may also compute h(m,s)
explicitly when s and k are distinct names (by drawing s and computing the application
of h itself). The two situations must be distinguished, as a simulator is forbidden from
accessing the game’s random samplings directly.

We introduce name constraints to keep track of how names are used in bideduction.
We will make use of the following set of tags:

TAGeonstr = {Ts, Tlgc} U {Tglib | v egG.gs}

Tag Tg indicates that a name corresponds to a random sampling of the simulator; T'é’c

corresponds to an oracle’s local sampling; finally, Télc;b corresponds to the global sampling
of variable v in the game.

Definition 12. A name constraint is a tuple ¢ = (a,n,t,T, f) where @ are variables in
X whose types are tagged finite, n is a name, t is a term, T € TAGeonstr, and f is a local
formula. A constraint system C is a list of name constraints.

Intuitively, a constraint expresses that, for any arbitrary instantiation of the variables
a such that f holds, the name n is used at index ¢ as specified by tag T. Variables a
are bound in the constraint. Accordingly, constraints are considered modulo renaming
of these variables and, when we consider several constraints jointly, we implicitly assume
that their bound variables are disjoint. We do not require that free variables of r and f
are all bound by a.

We formally define the multiset Ng:& def Uecec NcnjgI where:

def . )

N(’Z}:f)n,l,T,f),M § {<n’ [[t]]gﬁ’snT) | dom(o-) =a, [[f]]]?&g— = true}
This interpretation of constraint systems supports a natural notion of constraint sub-
sumption: we write &,0 | C C C” when for any M such that M : & | 0O, for any n and p,

ot . 1.0 1.0
we have the multiset inclusion NC’M C NC,’M.

Example 12. The system [({i}, n,1, Télib,f), ({i}, n,i,Ts, f')] expresses that: for every

value of i for which f holds, (ni) represents the global sampling of the variable v of the
game; and for every value of i for which f’ holds, (n i) represents a sampling performed by
the simulator.

For this to make sense, we expect the formulas f and f’ to be mutually exclusive, i.e.
[Vi.=(f A f")]e should be valid. Otherwise, there would exist a valuation v of i such that
the index v of the name n would be tagged both as a simulator’s and a game’s sampling,
which cannot happen in a valid interaction between the simulator and the game.

Validity

We define a validity criterion for constraint systems that captures when the usage of names
is consistent. First, name-tag associations must be functional: no name is associated to
two different tags. Second, the local samplings must be fresh: the associated names do not
occur anywhere else. Third, a globally sampled variable must be associated to a unique
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4.2. Bideduction judgement

def | Va1 Vas. fiAfo=1 #t3 when Ty #To,n1 =ng
Fun(ci,c2) =

T otherwise

Va1 Vds. AANfo= Cl(d)l) * CQ(CFQ) =1t #to when Ty =T, = Tlgc, ny = no

def
Fresh(cy, ¢ =
(€1 ¢2) {T otherwise

o Vc?1Vc?2. ANfa=1 =1 when 71 =Ty € {Tél,of | Vv E g.gs}, niy =ng
Unique(cy, ¢2) = VA V. finfo= L when Ty =Ts € {Télf)f | v eG.gs}, ni #ny
T otherwise

Figure 4.2: Constraint validity conditions, with ¢; = (&;, n;, 1;, T;, f;) for i € {1;2}; and we
let c1(a1) # co(ds) be a shorthand for T if ¢1 and cs are distinct occurrences, and @7 # a»
otherwise.

name. These three conditions must hold whenever condition f holds, and are defined
formally as local formulas in Figure 4.2. We finally define the wvalidity of a constraint
system C as the exact truth of all conditions on all pairs of constraint occurrences:

def

Valid(C) = | /\ Fun(cq, ¢2) A Fresh(cq, ¢2) A Unique(ct, ¢2) Je

Cc1,C2 eC

As expected, ® | Valid(C’) and ® £ C € C’ imply ® E Valid(C). The validity
condition relies on the exact truth predicate, in other words, we require our simulator
to always behave correctly w.r.t. randomness usage. Importantly, we never require that
names are distinct but only that their indices are distinct. The former would be too
strong: we certainly do not rule out the possibility that a simulator, performing a random
sampling by itself, happens to obtain the same value as a game’s random sampling.

We will make use of bi-systems of constraints C. In practice, they will be pairs of
lists of the same length, so we view them as lists of bi-constraints. We define Valid(C) as
Valid(Cy) A Valid(Cy).

4.2.2 Assertion logic

As explained in Section 4.1, we need to keep track of the game’s memory during the
simulator’s computation. We shall thus equip our bideduction judgement with pre- and
post-conditions, relying on an abstract assertion language — a concrete instance of it will
be taken in our implementation and in Chapter 6.

We thus assume an arbitrary language of assertions, with a notion of well-typedness
w.r.t. environments, and a notion of satisfaction: given some environment &, an assertion
¢ that is well-typed w.r.t. &, a model M : &, a security parameter n, a random tape p and
a memory u, we write M, 7, p, 4 E4 ¢ to denote that ¢ is satisfied by the left-hand side
elements. Note that an assertion ¢ can specify properties of both the game’s memory u
and logical values, including names, thanks to p. This allows, e.g., to have an assertion
expressing that the value of a particular name [[n t]]gﬂf & does not belong to some list stored
in the game’s memory u.

We do not necessarily ask for the assertion logic to support usual logical constructor,
we write M, n, p, u E* ¢ = ¢ for M,n,p,u E* ¢ implies M, 5, p, u E4 . This is a
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notation, the element ¢ = ¥ might not be an assertion formula. Also, when ¢ and
Y are bi-assertions, we write M, n, p, u E* @ = ¢ when M,n, p, 1 E4 @9 = o and
M, p, 1t B 1= ¢

4.2.3 Bideduction judgement

We now have all the ingredients to form the syntax of our bideduction judgement. Defining
its semantics, though, requires a little more work.

Definition 13. Let ul,...,u™,v be a sequence of bi-terms of base types, and m € N. We
say that a program p with distinguished variables X1, ..., X, and res computes & > v in
timen € R w.r.t. M,n, p, p, u and side i € {0,1} when:

URY

res [[V wzth ,u = (]pDMl,U Xk|—)|[uk]]}7 iy ]1<k<m

and the computation cost Cy(p,n, u[Xx — [[uk]] 1) is bounded by n. In this context, u’
is the final memory of the computation.
This notion is naturally lifted to vectors of bi-terms v.

Naively, one may then say that a bideduction u > v holds w.r.t. a game G when there
exists a simulator p against G which computes u > v w.r.t. any M, n, p, p, u and i. While
it makes sense to quantify universally over M, n, 4 and i, doing the same for p and p would
be meaningless, resulting in an unfeasible notion of bideduction. Intuitively, we can only
expect the semantics of program p and v; to coincide if they agree on the parts of the tapes
that are read. Crucially, these parts will be described by the constraint system associated
to the considered bideduction. For example, if we need a name k to correspond to the
PRF game’s (globally sampled) key key, it is necessary that the tapes p and p coincide on
positions corresponding to, resp., k (for p) and key (for p).

In order to define this relation between logical and program random tapes, we assume a
mapping from (semantic) names to offsets in program random tapes: for each environment
&, for each name symbol n : 7" — 7 declared in &, for each M: &, n e Nand a € [ ]]KAI,
we assume an offset Owi,(n, a) € N, such that (17, a) + Og,(n, a) is injective and PTIME
computable — this actually corresponds to the offset,(a) library function in the simulator
of Figure 3.3.

Definition 14. Let C be a constraint system and M a model, both w.r.t. &. For any
n € N, we define RZM as the relation between Ty, and program random tapes B such that

0 RZM p holds when p, is a prefix of p[Ta, 1 and for all (n,a,T) € N*, [[n]] gla) =
plF [0y (n, a)].

Couplings between logical and program tapes. Constraining the bideduction @ > v
by C will guarantee that there exists a program p which computes @ > v w.r.t. any tapes
p, p that are related by RZM, i.e. (omitting the initial memory):

for all i € {0,1} and p RCM p, Gp[) [res] = [[v: ]}

In order to be able to [ift the equality above to an equahty over distributions (required
in computational indistinguishability), i.e. to show that for any possible value x,

PrDE‘B (qu o [res] ) PrPGTM n ([V MS x) (4’?’)
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we rely on the standard notions of probabilistic coupling and lifting (as in, e.g., [62]). We
only present the main intuitions here, deferring full details in Section 4.4.3.

Consider some distribution C over pairs of logical and program tapes in Ty, X 8. The
left marginal of C is the distribution over Ty, obtained by extracting the logical tape p
from a pair of tapes (p, p) sampled according to C. The right marginal of C is similar,
except that it extracts the program tape p. A distribution C is said to be a probabilistic
coupling of Ty, and P, which we write C : Ty, »< B, if its left and right marginals
follow the same distributions as the distributions endowing, resp., Ty, and . When
C : Ta,y »< B, we thus have, for any x:

PrPETM 7 ([[V]]gﬁ’[pg = X) = Pr(p,p)e@ ([[Vl]]gjlpg = )C) (4'4)
Prpe‘B ((]pDﬂ . [res] = ) Pr(p,p)e@ ((]Pl)gjf, [res] = x)

where the top (resp. bottom) equation follows from the left (resp. right) marginal property
of C.
Assume that we can build a coupling C : Ty, »< B contained in RZM (this roughly

means that C only samples pairs of tapes related by RZ o). Then Eq. (4.3) holds. Indeed:

PrpeTM n ([[V M E = 'x)

= Prppec ([villifs =) (by Eq. (4.4))
= Pr(,.pec ((]p[)gﬂﬁ[res] x) (C contained in RZ,M)
= Pryey ((p)7};[res] = x) (by Eq. (4.5))

Couplings from constraint systems. Given a constraint system C, we would thus
like to build a coupling that is contained in RZ It turns out that this cannot always
be achieved: counter-examples, like Example 13 shown next, arise when a constraint
c¢=(a,n,t,T,f)is cyclic, e.g. because it features a condition f or an index ¢ that depends
on the name n ¢ introduced in the constraint.

Example 13. Consider a name n : unit — bool and let C = {cg, c1} with:

€o (m’n»<>’TS’n <> :0)
1 = (07 n, <>’TIOC? n <> = 1)

In words, n () must be seen as a simulator name when it is 0, and a local sampling of the
game when it is 1. But, to know in which case we are, we must already have sampled n ()!

Let us show that a coupling cannot be included in RZ‘,M First observe that p R
imposes that p, is a prefix of p[Ta, bool] and:

o either [n ()]]g/}[f)s =0 and pl,}’S[OM,n(n, M]l=0

o or[n Offe =1 and pll, [Owy(n, )] = 1.

cm P

Tloc

Less formally, the logical tape must coincide with the simulator tape on n () when this
sampling is zero; otherwise it must coincide with the local sampling tape for that name.

Thus, the program tape p such that plT [Oviy(n, ()] =1 and p|T|OC[OM,,,(n, )] =0 is not
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related to any logical tape in RZ’M — for any p, we do not have p RZ’M p. Hence the right
marginal of a coupling included in RZ‘M would never sample such tapes. This missing set

of tapes has non-zero measure (in fact it has measure i) hence the right marginal of our
coupling would not coincide with the standard distribution over program tapes, which is a
contradiction.

Such pathological cases are, however, irrelevant for our use of constraint systems, and
we rule them out by introducing the notion of well-formed constraint system. Details
have been postponed to Section 4.4.3. Given a valid and well-formed constraint system,
we are then able to build the desired coupling. Roughly, this is done step by step: well-
formedness ensures that there exists an order in which to sample the names corresponding
to constraints such that, when processing a constraint ¢, we are able to compute f and
t using the already sampled parts of the tape; then, if f holds, we sample the segments
of the logical and program tapes determined by n, r and T (validity ensures that these
segments are not yet sampled). Once all constraints are processed, the rest of the tapes
are sampled using the relevant probability distributions.

The following key lemma establishes that any well-formed and valid constraint system
C can be used to build a coupling contained in RZ,M (see proof in Section 4.4.5).

Lemma 1. Let C be a well-formed constraint system w.r.t. M,n such that M | Valid(C).
Then, there ewists a coupling C : Ty, »< B contained in RZM'

This lemma will be key to justifying our BIDEDUCE rule, which involves a bideduction
judgement with empty inputs. However, the notion of well-formedness needs to be adapted
to arbitrary bideductions: the general notion of well-formedness is relative to the input
terms the input memory. This will be crucial to soundly chain well-formedness. Again
details are postponed to section Section 4.4.

Bideduction. Finally, we define a library model of L, to be a model with respect to
L,, that is not defined on any variable that is not in L.
We finally define our intricate notion of bideduction.

Definition 15. A bideduction judgement is of the form:
E,.0,C.(p.¥) riivgV

where G is a game, & is an environment, ©® is a set of global formulas, C is a constraint
bi-system, the pre-condition ¢ and post-condition ¥ are bi-assertions, the inputs u and
output v are vectors of bi-terms.

It is valid when, for any library model My, there exists a program p and a polynomial
P such that for any model M : & extending My in such a way that M | © A Valid(C), for
anyn € N, i € {0,1}, C is well-formed w.r.t. M, n relatively to u and ¢ and for any tapes
o Rng p, and for any p such that M, n, p, 1 E* ¢,

e p has an adversarial behaviours against G w.r.t. M;n, u, [[u]]gﬁps, P,

o p computes u >V in time P(n, | ﬂu]]&’;s |) w.r.t. M,n, p, p, u,i and, the corresponding
final memory 1’ is such that M, n, p, 1/’ E* ;.
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e Moreover, we require that the computation of p when b =i relies on global sam-
plings Gg and local samplings Lg such that

Gs € {Ouy(n.a) | (n.a.TEP) e N ceCi}
Ls C {Owmy(n,a)|{n,a T )e N ceC}

Note that, while the general structure of the previous definition is guided by the need to
derive indistinguishabilities from bideducibilities (as proved formally in the next theorem),
some aspects of the definition are not necessary for this goal but ease compositional proofs
of bideduction through our proof system. This is the case for the conditions on local and
global samplings, which make it easy to compose programs while preserving the fact that
they are adversaries against G. That will appear in Chapter 5.

At a first sight, the fact that when C is valid and that the randomness of p is
entirely covered by the names of C might seem redundant with the fact that p has
an adversarial behaviour.

Indeed, we designed the validity of C to be a formula that ensures a good handling
of randomness, i.e. compatible with an adversarial handling. Further, the inclusion
of the sets Gg and Lg in the names of C ensures that all samplings made by p are
constraint by C. So why do these two conditions not imply that p is an adversary?
The key observation here is that Lg is a set. Thus, if p is sampling twice at the same
offsets, it would not be visible. In particular, assume a simple constraint system that
only ensures that a name n is fresh. It is valid. Now, imagine that p uses twice the
offset corresponding to n for a fresh sampling in an oracle call. Then, the sampling
of p will be in the set Lg, but p does not respect the freshness constraint.

4.3 Bideduce rule

Having formally defined bideduction, we can now incorporate it into the CCSA-HO logical
framework. For this purpose, we introduce a new inference rule that captures cryptographic
reductions from a game indistinguishability to a CCSA-HO equivalence. First, we present
the rule and its soundness Theorem 1.

In essence, the bideduction judgement states the existence of a simulator. At the
beginning of this chapter, we started with a rule of the form:

0 >(Go.61) #(V0; V1)

Vo ~ V1

BIDEDUCE (4.6)

We enriched the bideduction judgement with two ingredients: a constraint system and
pre- and post-conditions. Adding these ingredients, the rule becomes:

C, (. ¥) F0>g,6) #(Vo; V1)

Vo ~ V1

BIDEDUCE (4.7)

The question is: what should we require on C, ¢ and ¥ for this rule to be sound?
Coming back to the bideduction judgement, the premise implies that, intuitively, there
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exists a simulator S that computes #(vy; v1) when interacting with (Go, G1) such that
starting in a memory satisfying ¢, it yields a memory satisfying ¢, and the constraint
system C captures the randomness usage of S.

We prove the conclusion of the rule by cryptographic reduction to the game, using S.
As such, when 8 starts, the game was just initialized. Thus, ¢ must include the initial
memory of the game, and ¢ is arbitrary.

Also, we need S to be an adversary, which is ensured by the bideduction judgement
only when C is valid, which we check using an additional premise.

We formalize this intuition in Theorem 1, which introduces the full rule and its
soundness theorem.

Theorem 1. Let & be an environment, ® a set of global formulas, and @ be a bi-assertion
such that, for all M : & satisfying ©, for alli € {0,1}, n, p, and p such that p, is a
prefix of p[Ty X |, we have M, n,p,y‘}nit&p(g) EA ¢;. The following rule is sound w.r.t.
models where G is secure, for any C, #(vo;vi) and ¥ :

BIDEDUCE
E,0F Valid(C)  &,0,C,(p,¥) F 0 >g #(vo; V1)

E,0+F \70 ~ \71

4.4 Chapter appendix: couplings

In this appendix we go back to Section 4.2.3, where we intuitively introduced the notion of
well-formedness for constraint systems, coming from the need to lift semantical equalities
to probabilistic equalities. We define formally the well-formnedness condition, and prove
Lemma 1.

We first introduce necessary notions of probability theory in Section 4.4.1 and then
define in Section 4.4.2 and Section 4.4.3 couplings and well-formedness notions. The two
next sections aim at proving Lemma 1, i.e. that a probabilistic coupling contained in RZ‘,M
can be constructed from any well-formed and valid constraint systems C. First, we prove a
preliminary result showing how to build a coupling between two distributions over arrays
of independent and identically distributed (i.i.d. for short) values in Section 4.4.4, and we
then use this result to prove Lemma 1 in Section 4.4.5. Finally, the section goes back to
Theorem 1 and provides its proof in Section 4.4.6.

4.4.1 Preliminaries: probability theory

We first recall some standard definitions from measure and probability theory.

Definitions. For any set S, we let P(S) be the power-set of S. A o-algebra F over a
set S is a non-empty subset of P(S) closed under: i) complement; and ii), countable union
and intersection. An element E of a o-algebra is called an event. A measurable space
(S,¥F) is a set S equipped with a o-algebra F. A measure space (S, F, ) is a measurable
set (S, F) together with a function u : F — [0;1] — called a measure — such that i)
1(0) = 05 ii) u is non-negative (i.e. VE € F, u(E) > 0); iii) u is o-additive, i.e. for any
countable sequences (E;);en of disjoint elements of 7, u(UU; E;) = >; u(E;). A probability
space (S, F, u) is a measure space whose total mass is 1, i.e. u(S) =1. A distribution D
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over a measurable space (S, ¥) is a function such that (S, F, D) is a probability space.
Two distributions D1 and Do over (S, F) are said to be of the same law if D1(E) = Da(E)
for any E € . Finally, a random variable X : Q — S from a probability space (Q, Fq, uo)
to a measurable space (S, Fs) is any function such that VE € Fs, X 1(E) € Fq.

Notations. If (S, F, u) is a measure space and E an event of ¥, then the probability
Pr(E) of E is simply u(E). Similarly, if D is a distribution over (S, #) and E an event

of ¥, then Pr(D € E) def D(E). If X is a random variable from the probability space
def

(Q, Fa, na) to (S, Fs) and E an event of Fg, then Pr(X € E) = u(X Y(E)).

Distributions as programs. We will describe some distributions using programs
written in pseudo-code, e.g. if D is a distribution, then the program x <& D;y &
D;return (x,x+y) defines a distribution over pair of values. Given a program p, we write

Pr,(E) the probability of event E w.r.t. the distribution defined by p.

m and A systems. Let S be a set and X C P(S), then:
e 0(X) is the smallest o-algebra containing X — we say that X generates o (X).
e X is a m-system if X is closed under finite intersections.

e X isa Ad-system if @ € X and X is closed under complement and countable disjoint
unions.

We recall the following standard result:

Proposition 1 (Dynkin (7, d)-Theorem). Let P be a m-system and L a A-system. If
P C L then o(P) C L.

To show that two distributions coincide, it is sufficient to show that they coincide on a
generating m-system B.

Proposition 2. Let (S, F) be a measurable set and D1, D2 be two distributions over S.
Let B by a m-system such that oo(B) = . If D1 and D2 agree on B then Dy and Do agree
on F, i.e.

if VE € B,D{(E) = D3(E) then VE € F,D1(E) = D2(E)

Proof. Let L def {E € ¥ | D1(E) = D2(E)}. We can check that L is a A-system. By

hypothesis, B C L. Hence, by Dynkin (7, 1)-theorem, o-(B) C L, which, since B generates
¥, means that ¥ C L. Moreover, we trivially have from the definition of L that L C F.
Hence ¥ = L, and thus that Dy and D4 coincides on ¥. O

4.4.2 Couplings and lifting lemma

Recall that, in section Section 4.2.3, in order to be able to lift equalities over tapes in
RZ‘,M to equalities over probabilities, we relied on the standard notion of a probabilistic
coupling and lifting (as in [62]). In this section, we give the definition of probabilistic
coupling, before defining containment and a general lifting lemma.
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Definition 16 (Probabilistic coupling). Let (S, F1, u1) and (Sa, Fa, 12) be two probabilistic
spaces. A coupling C of uy and us, written C : uy > us, is a random variable C : Q — S1XSo
from some probabilistic space Q to S1 X So such that:

e uy and C’s left marginal follow the same law, i.e.:

VE, € ﬁ ].:)I"'u1 (El) = PI(C e F1 X Sl).

o similarly, ps and C’s right marginal follow the same law.

The coupling we build will be contained in the relation R”. . . ensuring that only related

tapes are coupled.

C.M’

Definition 17 (Probabilistic containement). Let (S, F,u) be a probabilistic space and
E € F an event. We say that the measure u is contained in E, when for all F € F,
u(F) =pu(FNE).

The following lemma allows to lift an equality over elements related by a relation R to
a equality over probabilities, as long as there exists a probabilistic coupling contained in R.

Lemma 2. Let (S, F1, u1) and (S, Fo, u2) be two probabilistic spaces, R € S1 X S9 a
relation between S1 and S1 and E1 € 1 and Eo € 5 be events such that:

forallx Ry, x € Ey iff. y € Es. (4.8)
Then Pr,, (E1) = Pry, (E2) if there exists a coupling u : g1 »< o contained in R.
Proof. First, notice that by Eq. (4.8):
(E1xS9)NR=(E;1 XE2)NR (4.9)

and
(Sex E9)NR=(E1 X E2) NR. (410)

Now, let u : py > pg be a coupling contained in R. Then:

Pr,, (E1) = Pry(E1 X S9) (left marginal property)

= Pr,((E1 X S2) N R) (by containement)

= Pr,((E1 X E2) N R) (by Eq. (4.9))

= Pr,((S1 X E2) N R) (by Eq. (4.10))

= Pr,(S1 X E») (by containement)

= Pry, (E2) (right marginal property)

which concludes this proof. O
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4.4.3 Well-formedness of constraint systems

The goal of this section is to define the notion of well-formedness of a constraint system
used in Lemma 1.
Doing so requires us to first introduce what are constraint instances.

Definition 18 (Constraint instance). Let @ = (o, ..., @;) be a sequence of variables of
type T = 10,...,7,. An instance of a constraint ¢ = (a,n,t,T, f) w.r.t. a type structure
My and n € N is an element (d,c) where @ = (ao,...,a;) and for any i € {0,...,j},
a; € [[ ]]gﬁo'

Given a model M and a random tape p, we can interpret a constraint instance as a
multi-set in a similar way to what we did with constraints:

.0 def n.p n.p _
N(ﬁ,(&,n,t,T,f)),M - {<n’ [ M[aHng]’D | [[f]]M[aHng] - true}

We lift this to any sequence I¢ of constraint instances as follows:

N[L’ﬁw E U(ﬁ,c)elc N(Z*’i),M
where, in the equation above, | J must be understood as multi-set union in the equation
above.

We are now ready to explain what is a well-formed constraint system. Roughly, a con-
straint system C is well-formed if there exists an ordering c1, ..., ¢, of the concrete instances
it represents that verifies the property that for any i, the instance ¢; = (a, (@, n,t,T, f)) is
such that the index ¢ and condition f can be computed using only the names defined by
the previous constraint instances cq,...,c j-1-

Definition 19 (Restriction of a random tape). The restriction ppini. of a random tape
o by a sequence of constraint instances lg w.r.t. a model M and n € N is the random tape
obtained from p by zeroing all random bits that corresponds to names that are not in

1.0
NlC,M'

Definition 20 (Relative well-formedness of constraint instances). A finite sequence lg =
(c1,...,Ck) of constraint instances is well-formed w.r.t. a model M : & and n € N relatively
to the terms u and an assertion ¢ when for any k < K, if cx = (a, (@, n,t,T, f)) then there
exists a function g such that for all tape p and memory u such that M : &,n, p, 1 | ¢ then

g(P|M,n,zg,M, [ &?8) =[] f)]]?M’E&Hng];(a,a)

where lé =(coy...,Ck-1).
We can now define the well-formedness of a constraint system.

Definition 21 (Relative Well-formedness of constraint systems). A constraint system C
is well-formed w.r.t. a model M and n € N relatively to a vector of input terms u and an
assertion ¢ when there exists a sequence lc of constraints instances such that for any tape
0, Ng’p = Nl’;’gﬂ, and lc is well-formed w.r.t. M, n relatively to u, ¢.

In that case, we say that lg witnesses the well-formedness of C.
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We write &, 0 Fwe(i, o) C if C is well-formed w.r.t. M, n relatively to u, ¢ for any n
and any M : & such that &0 | M. For pairs C = #(Cp; Cy) of constraint systems,
&, 0 Fwer(i, o) C stands for well-formedness of both Cy relatively to up, po and Cy relatively
to u1, ¢1. The fact that the notion is relatively to term and memory comes from the need to
compose the well-formedness of constraints system in the way we do for adversaries in the
bideduction inference rules later on. Still, the well-formedness we need in Lemma 1 must
be absolute, in the sense that the functions that computes step by step the components of
the constraint system takes no inputs (i.e. no inputs terms and no memory). The notion
of well-formnedness is defined below.

Definition 22 (Well-formedness of constraint systems). A constraint system C is said
well-formed w.r.t. a model M and n € N if and only if it is well-formed relatively to

o the empty term, and

o the assertion L, a special assertion formula such that only the empty memory can
satisfy.

Note that, if C is well-formed w.r.t. a model M : & and n € N, then there exists a
list of constraint instances lc = (c1,...,ck) of constraint such that for any k < K, if
cy = (a,(a,n,t,T, f)) then there exists a function g such that for all tape p

_ n.p
g(le,n,l’(‘;) =[] f)]]M[c_f'i—)ﬂZ]:(S,a)

where lé =(coy...,Ck-1).
Then, the following lemma close the gap between relative well-formedness and well-
formedness.

Lemma 3. Let C be well-formed w.r.t. a model M and n € N relatively to 0, ¢ and let us
assume there exists a function s such that, for all p, s(p,) produces a memory u such that
M: &,n,0,uE@. Then C is well-formed w.r.t. a model M and n € N.

4.4.4 Couplings arrays
We prove some preliminary results showing how to build couplings of arrays of values.
I.i.d. sampling of arrays. Let I be a finite set, and let Dg be a fixed but arbitrary

distribution over some measurable space (S, ). We identify the set S’ with arrays indexed
by I of values in S.

Definition 23. We let Dé be the distribution over S* (equipped with the product o -algebra)
where all cells are independently sampled according to Ds, i.e. the distribution defined by
the program (in pseudo-code):

a«— [L for __€el];
for (j €l) do {a[j] & Dg; } (4.11)

return a;

where L is a special element (s.t. L ¢ S) used to denote a cell that is yet to be sampled.
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Proposition 3. Let I be a finite set, and p be any program of the form.:

a« [Lfor__el;
S ¢ Sinit;
for (_ € |I)) do {i « f(s); a[i] & Ds; s « g(s,a); }

return a;

(4.12)

where sipie, fand g are arbitrary mathematical deterministic functions such that at the end
of the execution of the above program, all cells in 1 are sampled.
Then p defines a distribution over S' of law Dé.

Proof. Let n=1I| and Eq,...,E, € F be events of (S, ¥). First, let us prove that:
Pr,(a e[l E;) =Prp(a e []; E) (4.13)

where pg is the program sampling the array in an i.i.d. fashion as described in Eq. (4.11)
(hence Prp,(a € [1; E;) = [1; Pr(Ds € E;)). We start be splitting the sum:

Prp(ae [ Ei) = XoPrp((@a €L E) | Ag) - Prp(As)

where the sum is over all permutations of {1,...,n} and A, is the event: “p sampled
values in the array in the order o”. Conditioned by A, the probability that p samples an
array in [[; E; is the probability that the program:

a« [Lfor_€I];
for (j €I) do {a[o(j)] & Ds; }

return a;

samples an array in []; E;, i.e. [[; Pr(Ds € E;-1(;y). Hence:

2o Prp((a €e[LLE)|As)- Prp(AO')
= 2o [1; Pr(Ds € Ej1()) - Prp(Ag)
= [1;Pr(Ds € E;) - 2.y Prp(Ag)
= [I; Pr(Ds € E;)

This concludes the proof of Eq. (4.13).

To finish the proof, we must show that Pr,(a € E) = Pr, (a € E) for any event E in
the product o-algebra [[<;<, . Let B be the set:

BYE (Eyx---xE,|E.... ,E, €F)

We know that p and Dé coincide on B (by Eq. (4.13)). Moreover, we can check that B is
a m-system. By Proposition 2, p and D]é agree on the o-algebra generated by B, which is
the product o-algebra over S'. Consequently, p is of law Dé. O
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Couplings i.i.d. arrays from selection functions. Let [; and Iy be two finite sets,
and let Dg be fixed by arbitrary distribution over a measurable space (S, F) (the sample
space).

Assume that we have a function select such that, for any two partially sampled arrays
a;: I > SU{L} and as : [y — S U {L}, (select a; as) either selects a pair of L-valued
indices of a; and a9, or returns a special value done. More precisely:

Vai, ag. select a; as € (I; X Iz) U {done}

4.14
and select aj as = (i1,i2) = a1[i1] = L Aas[is] = L ( )

Let p.(select) be the distribution over Dél X D% defined by the program (in pseudo-
code):
ay « [Lfor __€ely];
ag « [L for _ els];
while (select a; ag # done) do {
(i1,i9) « select ay as;
v Dg;
ali1] & v;
agliz] & v;
}
for (i € I;) do {if (a;[i] = L) then a;[i] & Ds; else skip }
for (i € I) do {if (az[i] = 1) then as[i] &

return (ai, az);

Dg; else skip }

Proposition 4. For any selection function select satisfying Eq. (4.14), we have that:
pe(select) : Dél < D]éz.

Proof. 1t is clear that p.(select)’s left marginal follows the same distribution as:

ay <« [L for __elq];
ag « [L for _ els];
while (select a; ag # done) do {
(i1,i2) « select a; as;
ai[i1] & Ds;
azliz] « ar[i1l;
}
for (i € I;) do {if (a;[i] = L) then a;[i] & Ds; else skip }

return a;;

This program samples all the cells of a; independently according to the distribution Dsg,
in some particular order. By Proposition 3, we know that the order in which we sample
cells does not matter, and that the distribution defined by this program is of law Dél.

Repeating the same reasoning on the right, we get that right marginal of p.(select)
follows the distribution Dg, which concludes this proof. O
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4.4.5 Constructing a coupling contained in RCM

We now recall and prove Lemma 1.

Lemma 1. Let C be a well-formed constraint system w.r.t. M, n such that M | Valid(C).
Then, there exists a coupling C : Ty, »< B contained in RZ‘M

Proof. Let M be a model, n a value of the security parameter and C a constraint system
such that C is both valid and well-formed w.r.t. M. We are going to build, for any n € N,
a coupling that is contained in RZ‘,M

We use the framework of Proposition 4 for building couplings. We instantiate it such
that a; represents a (partially defined) logical tape, which will be noted p, and ag represents
the relevant finite portion of a partial computational tape, noted p. Given a partial logical
tape p, mapping each type and index in Ry, (7) to a value in {0, 1, L}, we say that a term
t is well-defined w.r.t. p when [¢]]7:°L = [¢] 772 for all tapes p1 and py that coincide with
p where it is defined. When it is the case, we allow ourselves to simply write [[t]]"p for
this unique value.

We now describe the selection function (select p p) with which we instantiate the
framework. Let [¢ be a sequence of instances witnessing the well-formedness of C w.r.t.
M, 1. At each iteration, the function select chooses, if it exists, the smallest integer k, such
that the k" element in I; is a constraint instance (&, ¢) with ¢ = (@,n,t,T, f) € C such
that:

(a) both |[f]]'7p 16.d and ﬂtﬂ&‘E&Ha],a 5 are defined w.r.t. p, and the former is true;

(b) p still contains L in the segment corresponding to name n and index [[¢])” M[ alEd)
(c) p still contains L in the segment corresponding to name n, index |7 &l[)&r—v?]: g and
tag T,

and returns the corresponding indices in the logical and computational tapes. Otherwise,
it returns done.
It should be noted that select does not simply consider offsets in the order prescribed
by lc. To explain why this is necessary, consider two equivalent constraint instances (a, c)
and (&, ), i.e. such that they both satisfy (a) and their indices are the same:
[[t]]npm—m =7 ]]77/)

,(l'

Then, (&, c) and (a’, ¢’) refers to the same offsets, and the function select should not return
twice the same offsets.

We now show that our coupling is contained in RZ‘,M' To do so, consider an arbitrary
run of p.(select). We say that an instance (a, c¢) is addressed at some point in this run
if satisfies (a) but neither (b) nor (c¢). Once an instance is addressed, the value of the
corresponding name will have been set in the tapes. Note, though that an instance needs
not be selected to be addressed: it suffices that an equivalent constraint instances is
selected.

We observe that, at every step of our run, and for every instance for which condition
(a) holds, conditions (b) and (c) are equivalent. Indeed, if only one kind of tape is defined
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for our name, it must have been set due to the previous selection of another constraint
instance, but validity imposes that distinct instances address distinct names.

Then, we note that, for every instance (d, ¢) in the sequence I, if all instances preceding
(a,c) in I have been addressed then condition (a) holds. This is a consequence of well-
foundedness. Indeed, let ¢ = (&,n,t,T, f) and I’ = ((ao, o), - - ., (dk, cx)) be the instances
strictly before the position of the instance (a,c) we consider in [c. We have that for any
P, the semantics of (¢ | f) is a function of Py, ;- We assumed that all the instances of I’
have been addressed. Then for any tapes p and p that coincide with the partial tape p,
we have that pp, » = Py, and thus (¢ | f) is well-defined w.r.t. p.

To conclude, every instance in /¢ will eventually be addressed. Hence, for any (n,v,T) €
A/ZZ;:%AI = Ng,ﬁw we have [n]]{s(v) = plf[Oney(n,v)]. The rest of RZ,’M, concerning p, and
p[Ts, ] is obvious. O

4.4.6 Proof of Theorem 1

We recall Theorem 1 and proved it.

Theorem 1. Let & be an environment, ® a set of global formulas, and ¢ be a bi-assertion
such that, for all M : & satisfying ©, for alli € {0,1}, n, p, and p such that p, is a
prefiz of p[Ty X |, we have M, n,p,u’}nit&p(g) EA ¢;. The following rule is sound w.r.t.
models where G is secure, for any C, #(vp;v1) and ¥ :

BIDEDUCE
&,0 + Valid(C) E,0,C, (g, )0 >g #(vo; v1)

E,0+ v_)o ~ \71

Proof. Let & be an environment, ® a set of global formulas, and ¢ be a bi-assertion such
that, for all M : & satisfying ©, for all i € {0,1}, n, p and p such that p, is a prefix of

p[Ta X ], we have M, n,p,ufnit&p(g) E4 ¢
Let vy and v be terms. Let assume that the two following judgements are valid :

E,0 + Valid(C), (4.15)

€,0,C, (@, ¥) F 0 >g #(vo; v1). (4.16)
Let us show that the following is valid:

E,0+F V_)o ~ \71.
That is, let us show that for any model M with respect to &
M:&E,0 Evy~v]

Then, let M : & be a model satisfying ®. Let D be a PPTM, and we must show that
the following quantity is negligible in n:

Pr (D1, [Vo]lig, pa) = 1) _pe%r (OO V1] pa) = 1)|

pETM,n M,n

We do this by cryptographic reduction to the indistinguishability of G.
By validity of C given by Eq. (4.15), the judgement of Eq. (4.16) yields that there
exists a program p and a polynomial P such that
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(h1) for any tapes p R and for any n € N, i € {0,1}, and for any u such that

p
CcCM ™
M, 1, p, 1t EA @i, p has adversarial behaviour w.r.t. M, n, u, [[0]]124,1{)8’ p

(h2) C is well-formed w.r.t. M, n relatively to 0, ¢, for any n € N,

(h3) for any tapes p R and for any n € N, i € {0,1}, and for any u such that

P,
C,.M
M, 5, p, 1 E? @;, p computes 0 > v in time P+ | [O]7F: ) wrt. M,n, p, p, p,i.

We now construct a PTIME-adversary that wins against G with non-negligible proba-
bility. First, D is a PPTM, hence, by Turing completeness (see Section 3.3.3), let p’ be a
PTIME program that does the same computation as 9. Let p” = p; p’ assuming X,y are
input variables for p’, where X,os are the program variables storing p output, then for all
peP,andie{0,1}

DO, ()2, [18s]. pa) = (p7)7, res]

Then, let p, p be tapes such that p RCM p. Let y; = fth for any i € {0, 1}, the initial

memory of the game G. By hypothesis, and definition of R i we have M, n, p, u; E4 ¢,
for i € {0,1}. Hence, by (h3), we have, for any tapes p RCM p,

(]ngjI?O,yo res] [[VO]] a’nd quKE)L#I res] [[Vl

and thus,
(]p”[)&?o#o[rés] DA, [Vo]ife» pa) and (]p”Dg/fLH1 [rés] = DA, [Vi] e pa).  (4.17)

Let 7g,---,7r be the types of vy (and v}), and for all security parameter n, let
Tm=r0,""", Tk]]g/ﬂ.

Given p, let p be a program tape where p, is a pre-fix of P[Ty X bool] and all other
bits of p are zeroes. Note that he program tape p and the memory ,ulmt'7 P can be full
computed by a function. We can then lift (h2) to the (un-relative) well-formedness of C
by Lemma 3.

Then, by Lemma 1, we know that there exists a coupling C : Ty, > contained in

n
RC,M
Hence, using Eq. (4.17) and Lemma 2, we have that :
= 1P _ NP y=¢ —
pe%fﬁ,,, (@(177’ [[VO]]M;S’pa) = 1) P%(qp DM’O’ﬂO[res]’pa) = 1) and
r
P

= NP _ NP =, _
pe%’n(ﬂ(l",[[vﬂ]Mza,pa)—1) Pe’(d P')I ., [rEs]. pa) = 1).

Hence, we have:

Pr (DO [l p0) = 1)~ Pr (D7 1711y 0 = 1)|

p€T,y P,y

=| Pr (7., 1851 p2) = 1) = Pr ()7, 78] o) = 1)

It remains to show that p” is a PTIME adversary.
First, notice that, through Lemma 1, we have that for every program tape p, there
exists a logical tape p such that p Rg, o P for any side i. We can then lift the hypotheses
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(h1) and (h3) to any tape p and thus show that for every tape p and side i, p has an
adversarial behaviours w.r.t. M, n’“fniﬂy’ p and Cy(p, n,yfnitl\p&[n) in bounded by P(7n).
Hence, p is a PTIME adversary against G.

Furthermore, the program p’ does not do any random samplings, except for the one in
Tx, and no oracles calls. Also, it is PTIME. Thus, the program p” is also an adversary
against G, by (hl). Hence, by cryptographic reduction to G the following quantity is

negligible in n:

| Proeg (qp”Dng’o’m [res] = 1) = Pryeyp ((]p”Dg?M’LM [res] = 1) (4.18)

which ends the proof. O
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The previous two chapters introduced the framework for games and adversaries,
bideduction judgments and the BIDEDUCE inference rule. This chapter has two main
objectives. First, it presents a proof system for deriving bideduction judgments. A key
design goal of this system is composability — ensuring that proofs can be modularly
combined. Second, the chapter establishes the soundness of the proof system, showing
that any derivable judgment is valid. To help develop intuition for both the design of the
proof system and the soundness results, the chapter begins with an overview following-up
on the overviews’ of Chapter 3 and Chapter 4.
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Chapter 5. Bideduction Proof System

5.1 Overview

The bideduction rules of our proof-system allow building simulators piece-by-piece in
a compositional way, using the simulators provided by the premises of a rule as sub-
procedures of the simulator being built to justify the rule’s conclusion. To give some
intuition about rules design, we come back to the rules introduced in Section 4.1.

The simplified rules presented in Chapter 4 mostly ignored constraints systems and
pre- and post-conditions consideration.

We show in this overview how to enrich the rules with these features. Further, we
will associate to each rule an informal program showing how the simulators provided by
the premises are composed to obtain the simulator for the conclusion, to help build an
intuition for the rule soundness.

Transitivity rule. The transitivity rule introduced in Chapter 4 was:

ucv u,vo-w

uvcv,w
The simulators behind this rule is put in sequence the two simulators coming from the
premises :
S(u) = v« Si1(u);
o w— So(u, V)

To enrich this rules with pre- and post-conditions, we notice that the game state in
which 8y executes is the state at the end of S;’s execution, and that the pre-condition
(resp. post-condition) for S is the pre-condition of Sj (resp. post-condition of Sz). Hence,
in our judgement, the pre- and post-condition must be chained.

Also, the randomness used by § is the union of the randomness used by 8; and the
randomness used by Sy. We note C'-C? the concatenation of the constraint system C; with
the constraint system Csy, and generalize it to bi-constraint systems concatenation, where
C! - C? is the bi-constraint system where the right constraint system is the concatenation
of the right constraint system of C; and the right constraint system of Cy (and similarly
on the left).

In conclusion, the rule is enriched like this:

ClLp.o)rii>¥ CL (o W) i,y >w
C'-C (o) rii>¥,W

The name rule. The name rule was already enriched with the constraint system in
Section 4.1. Also, the simulator captured by this rule only performs a sampling, which
hence let the game state unchanged. So the enriched rule is:

{(ni, Ts)}, (@, @) F i > 1;

with a simplified version of constraint system. The following simulators justify the rule
soundness:
S(ii) := x, < Tg|offsety (i)]
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5.2. Proof system

The oracle rule. Consider the oracle rule for a hash oracle of game G as sketched in
Chapter 4.

usvy
u > h(v, k)
The underlying simulator is the following:
S(@id) = v « Si(u);
Xp ¢ G.hash(V)|offsety (i) ]

First, this rule must add new constraints. Indeed, we must register that k; is the key of
the game. So the rule becomes:

Crunvsyvy

C- {(ki TED)} F i & h(v, k)

Now, we want to extend the rule to integrate pre- and post-conditions. Recall that, in the
game memory, the list fnasn is updated when the hash oracle is called (Figure 3.2).

We must enrich the rule to enforce that, when starting from a memory respecting ¢,
the hash oracle on v leads to a memory respecting ¢’ where ¢’ ensures that v is in the list.

Since the pre-and post-conditions are left abstract in the proof system, we assume there
exists a logic that can express such properties through oracle triples, a specific judgement
capturing pre-and post conditions update during an oracle call.

More precisely, we assume the existence of a judgement

{@}t — Onasn(v) [kil{y}

that says that whenever the hash oracle is called with a state respecting ¢, on input v,
with key ki, it reaches a state respecting ¥ and returns ¢ — we leave the verification of
such triples is left later.

Then, the oracle rule becomes:

C.(p.o)rurv  {p}t — Opasn(v)[kil{y}

C.(p. ) - {(ki, TE)) i > 8

5.2 Proof system

We now present the proof system we designed for bideduction. Our proof rules are guided
by the structure of the term to be bideduced. This section provides the full table of
inference rules, along with intuitions on the proofs of soundness for some key rules. The
full proofs of soundness are postponed to Section 5.3.

5.2.1 Preliminary definitions

Conditional terms. To enable expressive rules, it is useful to consider vectors of
conditional terms. Such a vector 7 is an element (( f1, if fi then t1), ..., (f, if f, then ,))!
or more conveniently noted ((¢1 | fi),...,(t, | f»)), where fi,t1,--- fu,t, are terms.

IHere, (if f then t) is syntactic sugar for (if £ then ¢ else witness,) where 7 is the type of t and witness
is an arbitrary symbol of type 7 (whose existence is guaranteed, as all types are inhabited).
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Chapter 5. Bideduction Proof System

We will thus consider bideductions of the form # 1> #, with f a vector of conditional
bi-terms.

Operation on constraints systems. We shall use two operations on constraint systems.
First, the concatenation of bi-constraint systems is defined as #(C&; Cll) . #(Cg; Cf) =
#(C& . Cg ; Cl1 -C12). Second, we define the generalization []x.C of C over x as the system
C where x is added to the vector of bound variables in all basic constraints of Cy and Cj.
The validity of []x.C implies that of C.

Oracle Hoare triples. Oracle Hoare triples are used to capture the evolution of the
memory during an oracle call. Going back to Section 5.1, we assumed the existence of a
dedicated judgement. Still, the one presented earlier is incomplete. Indeed, as shown in
Example 14 it is convenient to take into account the branching condition under which the
oracle call is made.

Example 14. Using the PRF game of Figure 3.2, we should have that:
(05 0) > l’l(l’l, k)9 #(h(ma k)7 nfresh)

for any adversarial messages n,m such that n and m are always distinct, i.e. [n # m]e
(ignoring constraint systems and pre-and -post conditions for now).

If n and m are two names n and m, we cannot guarantee that they are always distinct.
However, we have the following:

(0,0) > h(n,k),if n # m then #(h(m, k); nfresh)

That s, the challenge oracle is only called in the then branch when n # m does hold. The
ability to propagate information from term-level conditionals in oracle calls is crucial to
verify such bideductions.

We define the Oracle Hoare triples below.

Definition 24 (Oracle Hoare triples). An oracle triple for an oracle f, written

{p; b}y — O4(D)[k; F1{y)

is formed from: assertions @ and ¥ for the pre- and post-conditions, a boolean term b,
an output term v, input terms t, and terms k and 7 for the global and local randomness
offsets of the oracle. We require that the offsets are of the form k= (ky 0y)vef.globs and
F = (ry Syplveslocg . where k, and r, are names.

An oracle triple must characterize correctly the execution of an oracle call in a program.
We give here the definition of an oracle triple validity.

Definition 25 (Oracle Hoare triples validity). Consider an oracle triple for an oracle f:
{@; b}y — O5(0) [k; F1{y}
whose offsets are of the form
k = (k, Ovﬁ)vef.glob$ and = (ry svﬁ)vef.loc$-

78



5.2. Proof system

This triple is valid, which we write:

® E {p; b}y — O40)[k;51{y},

when, for any M such that M | ©, for any n, p, u, i € {0,1}, and any fresh variable X, if
M, 7, p, u E* @i then

o if [bi]]fs =0 then M,n, p, EA y; else,
o if [[bi]]gﬁfs =1, then M, n, p, i’ E* w; and [[v; gﬂ’fg =1/ (X) [fexpr]?’ﬁ?&i’#,, where:

f =X — o[l ) ers e Dy?
¢k = (Owren(ky, [[Ovsi]]gjfa )vef.glob$ and

e_)s = (OMZ&U(FV’ [[SVJ]]?M’I/:JS))vef.IOCSB

with p an arbitrary program tape s.t. p, is a prefix of its adversarial tape.

5.2.2 Inference rules

Summary. First, our proof system features rules for basic simulator constructions, like
duping output element, if then else program instructions, etc. More interestingly,
a central rule of our proof system features transitivity, which corresponds to composing
simulators. Furthermore, in order to represent unbounded collections of objects to bideduce,
we extend the bideduction judgement beyond terms of base type, allowing order-1 types
when the argument types are enumerable — this is captured by the type restriction enum,
see Section 2.1. This does not change the semantics of bideduction: we simply view these
functions as an explicit representation of their graph. This extension notably brings rules
to support A-terms and induction though while loops.

Inference rules of our proof system, given in Figure 5.1, Figure 5.2 and Figure 5.3 are
organized in three categories:

o First, the structural rules. This includes weakening rules (of hypotheses, pre- and
post-conditions, constraints ...), re-ordering of the terms, and rewriting.

o Second, the computational rules. They capture the computations that do not require
random samplings or oracle calls from the simulator. This comprises function
applications, transitivity, computation of adversarial terms, conditional if then else ,
computing a function’s graphs, and induction.

o Finally, adversarial rules capture adversarial capabilities: random samplings and
oracle calls.

Structural Rules

The common point of all structural rules (Figure 5.1) is that they do not radically change
the simulator obtained from the premise.
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WEAK.CONSTR WEAK.COND
8’®’C’(¢’¢)Fﬁ>{v) 8’®’C’(¢7¢)Fﬁ>f’(v|f,)’w
® |: cccC 5,0 |:WF(ﬁ,¢) C’ 5,0+ [f = f,]e
E,0,C,(py)ruvw E.0,C. (o) ruv(v|f)w
WEAK.MEM WEAK.HYPS
E,0,C.(p.Y)rurvvy E,0.,C (o) rii > w
EOE' =9 EO0EF'Yy=y OE®
E,0,C (oY) rurv E,0,C (o, ¥)rurv>w
PERMUTE
0,0’ are permutations
REFL E,.0,C (o) Ful,--- um >yl . "
E.0,0,(p, @) ru,tr>t E,0,C, (o) ruV . umm ppr M o)
REWRITE-L
Dropr . 8’ @7 C7 (‘p’ ¢) F #(W()v M71) > v
8,@,0,((,0,!#)|—l7l>§,t E,0¢F [L70=v170]e/~\[1/71:\471]e
E,0,C,(p.¥)rurvy E.,0,C, (o, ¥) + #(up; u1) > v
REWRITE-R
E,0,C, (o, ¥) Fu > #(Wo; wi) Dup )
E,0+F [vo=wile A [vo = Wile E,0,C, (o) rurv,t
E,0,C, (g, ¥) Fu > #(vy; V1) E,0,C (o, 0) Fii > 7,11

Figure 5.1: Structural bideduction rules

First, notice that a simulator that computes a term ¢, also computes any term ¢’ exactly
equal to ¢’. This also holds for input terms: using a term u or a term u’ exactly equal does
not change the simulator’s result. This is captured by rules REWRITE-L and REWRITE-R.

Rule DROP holds because, given a simulator corresponding to the premise, we obtain a
simulator for the conclusion by executing the premise simulation and then dropping some
of its outputs. Similarly, PERMUTE corresponds to re-ordering inputs and outputs, REFL
to copying an input, DUP to duplicating an output.

Then, we have four weakening rules. The rule WEAK.HypPs and WEAK.MEM for
hypothesis and pre- and post-conditions weakening, designed as expected. The rule
WEAK.CONSTR for constraints weakening on the same ideas, based on the previous remark
in Chapter 4 that when C € C’ then Valid(C’) = Valid(C). Finally, the rule WEAK.COND
weaken the local formula attached to term. For any term (¢ | f) and a formula f” such
that [ f = f’]e then an adversary that computes (v | f’) and f can also compute (v | f) :
intuitively, such adversary compute v more “often” than when f is true and at least every
time that f is true.
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FA
LIBRARY E,0,C (g, W) ravv, (' | f),....(t" | )
1 e Lpa g € ‘£p
E,0,0,(p, o) Fii >t E,0,C (o) riu>v,(gth ... " f)
TRANSITIVITY R
IF-THEN-ELSE E,0,C (g, ¢) + ﬁf t
E,0,C. (o) ruvv,(b|f),(t| fAb),({'|fA-b) E.0,C% (¢ Y) ril,t> ¥
E,0,C, (o, ¢) +ii>¥,(if b then t else £’ | f) E,0,C'-C (oY) i > 1,7
LAMBDA-APP LAMBDA
€.0,C (p.y) rur(gt|f) (E,x:7),0,C, (g, @) Fu, x> (t| f)
Ert: enum(7) E,x:71kt: € enum(7)
E,0,C.(p.Y)rur(gt]f) E,0, [T C (@, @) rur (Ax:7).t]f)

QUANTIFICATOR-O € {V, 3}
(&,x:7),0,C (p,p) rii, x> (t| f)  enum(7)

E.0, [l C.(p.@) ru > (O(x:7).t] f)

INDUCTION
8’6760’ (¢aI<(X0)) i > (t | .f)
(E,x:1,),0,C, (Tc(x), I<(x) v, x,( A(y:7m).(vyly<xAx<t) | f)> (vx | fAx<E)
(&.x:7),O[x0 < x]e[x < fle E* T<(pred(x)) = T(x)
finite(7,) fixed(7,) &,© + well-founded,, (<) <€ L,

8a®’CO : H(x: )C’ (‘)D’IS(t)) F l_i > (V t | f)

Figure 5.2: Computational bideduction rules

Computational Rules

We call computational rules the rules that do not require random samplings or oracle calls
from the simulator. The are describes in Figure 5.2. They include:

o the rule LIBRARY that builds a program that compute a library term (which is
immediately an adversary);

o the rules that compute functions (FA for library function, LAMBDA-APP for com-
puted function, IF-THEN-ELSE for specific handling of if then else );

o the rules that chain programs: either with sequence of two programs (TRANSITIVITY)
or under while loops (LAMBDA to compute a function graph, QUANTIFICATOR-
O € {V, 3} for specific handling of quantifiers, INDUCTION to compute recursively a
function graph). These rules must ensure that the final program is polynomial. This
is done through restrictions on the size of the while loop of the underlying simulator
(we restrict types of lambda quantifier to be over enumerable types or fixed and
finite types for induction).
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NAME
E,0,C.(p,¥)rur (t|f)

&,0,C- {(07nat’TS7f)}’(‘p’¢) i > (l’lt | f)

ORACLEf

€.0.C.(p.9) Fii g . (t|F), (3 |F). (S |F)
O E{y; Flv — O4(t)[k;F]{6}
£,0,C.(p.0) rusgw,(v|F)

with C' =C - H (0,ky, 0,4, Té':}b’ F)- ]—[ (0, ry, sy, T'GOC, F),
vef.globg vef.locg

0= (ovﬁ)vef.glob$ and § = (Svﬂ)VEf.loc$
Figure 5.3: Adversarial bideduction rules

The rule INDUCTION might be difficult to parse, so let us unpack its definition more
precisely here. Roughly, it states that to bideduce (v ), it is sufficient to bideduce ¢
and then (v x) for any x < ¢, assuming by induction that we already computed (v y)
for any y < x. The rule assumes the existence of I a memory invariant describing the
evolution of the game’s state during the recursive evaluation of v. Concretely, 7..(x) is an
abstract memory parameterized by a relation » over 7 and a value x of type 7;,, where
I _(x) and Z<(x) represents the memory resp. before and after the deduction of v x. The
premise Z<(pred(f)) = Z.(x) ensures that the assertion are chained correctly, that is the
post-condition of one deduction implies the pre-condition of the following deduction. The
conclusion of the induction rule states that at the end of the recursive computation, the

memory satisfies 7 up-to ¢.

Adversarial Rules

Finally, there are two adversarial rules, described in Figure 5.3, which captures two specific
capabilities of adversaries: NAME corresponds to random samplings; and, ORACLE to
oracle calls.

In particular, the oracle rule soundness relies on the validity of the oracle triple. More
precisely, from the bideduction premise, we get a simulator p that computes inputs and
offsets for the oracle call. The final simulator p” is p followed by an oracle call. The new
program is polynomial if p is. Furthermore, the validity of C ensures the freshness of local
offsets and uniqueness of global offsets. The equality between the result of p” and the
semantics of the output terms follows from the validity of the oracle triple.

5.2.3 Example

We illustrate how our proof system operates using examples. We present an example that
encapsulates keys steps in the complete proof for the example introduced in Section 3.1,
In Example 15, we show how one can prove the indistinguishability of a vector of three
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non-recursive terms. This example illustrate the oracle calls rules, for the PRF game of
Figure 3.2.

Example 15. We are going to show the indistinguishability
h(n7 k)’ h(m’ S)’ h(m’ k) ~ h(na k)’ h(m’ S)’ nfresh (51)

using bideduction w.r.t. the PRF game of Figure 3.2, where n,k, m,s are distinct names of
type 7. We are going to show that:

1. the first and last terms can be computed using oracle calls;
2. and that the middle term is just a function application.

For Item 2, we require that h is an adversarial function symbol. To be able to carry out
the simulation strateqy of Item 1, we need to ensure that n # m, which we do using the
trick of Example 14. First, we assume that the type 7 is a large type: essentially, this
means that independent names with output type v have a negligible probability of collision.
This assumption is captured by the large(7) hypothesis introduced in Chapter 2. Under
this hypothesis, it can be shown that large(7) | [n # m] and thus, using the rewriting rule
of [29], that the indistinguishability in Eq. (5.1) is implied by the formula:
h(n, k), h(m,s),if n # m then h(m, k)
~ h(n,k),h(m,s),if n # m then ng.esh

Let’s take the hypotheses ® = adv(h), large(7).

For the sake of simplicity, we instantiate assertions by sets of memories: thus, roughly,

satisfiability is set membership and implication is set inclusion. Consider the following
assertions:

Yo = {(lhash =[] ; lchallenge = [])}
Y = {(lhash = [n] ;lchallenge = [])}

where []| is the empty list and [n] is the list containing a single element n. We have:

© = {@o} h(n, k) < Onasn(n)[k;.]{¢},

and, using NAME to compute n, we get the bideduction judgment:

®, ((n.Ts, 7). (k. T2, T)). (¢0. ¢) + 0 & h(n, k).

All the name constraints in this example have no bound variables and are for names
n, k,s,m which are not indexed. Thus, we use a shorter syntax for constraints, and write
(name, T, f) instead of (0,name, D, T, f).

Then, using NAME, DUP and FA, we also get that:

0, ((m,Ts, T), (s, Ts, T)), (¢, ¢) F 0 > h(m,s).

Finally, we have:

{e An#m} #(h(m,k); nfesh) 0challenge(m)[k§ Nfresh] {¥}

83



Chapter 5. Bideduction Proof System

for a certain . As before, using the rules IF-THEN-ELSE, ORACLEs for f = challenge
and NAME, we have that:

0, ((n,Ts, T), (M, Ts, T), (M, Ts,n # m)

(k7 Tglib9 n ¢ m)9 (nfreshaTlgc, n ¢ m))9 (QD’ w) |_
0 > if n # m then #(h(m, k); nfresh).

By transitivity, we get the final judgement:
Sa ®a C5 (¢09 lp) - 0 > h(na k)’ h(ma S)a If n ;é m then #(h(ma k)ﬂ nfresh)

where C is the following constraint system:

lob
{(nTs, ™) (kT T) L (m,Ts, T),
(S, Ts, T) , (n,TS, T) s (m,Ts, T),
glob

(m’ TS’ n ¢ m)’ (k’ TG,k ’ n ¢ m)a (nfresh,Tlgc, n ;t m) }

Then Valid(C) is easily verified, and the proof is done.

5.3 Soundness

Theorem 2 states that our proof system is sound.

Theorem 2 (Proof system soundness). Any bideduction judgement derivable by the proof
system is valid.

In this section, you will find preliminary definitions and lemmas, followed by the
soundness proofs for each inference rules.

For the rest of this section, we fix an arbitrary library model My, an arbitrary game G,
and an arbitrary environment &. All mention of models M will implicitly be with respect
to &, extending M.

5.3.1 Preliminary definitions

For the sake of readability of the proofs, it is useful to decompose bideduction semantics
into simpler properties. This section provides these simpler properties and the Theorem 3,
which provides an equivalent characterization of bideduction judgement validity, that will
be the one used for all soundness proofs afterward.

Definition 26 (Relative PTIME adversary). We way that a program p is a (relative)
PTIME adversary w.r.t. M,n,C,¢,u when there exists a polynomial P such that for
any i € {0,1}, for any tapes p RZ‘-M p, and any p such that M, n, p, u EA ¢;, p has an
adversarial behaviour w.r.t. M, n, 1, [ ]}, p, and the computation of p on input [if; ]|},

is bounded by P(n+ | [u; &ig )

Definition 27 (Memory flow). We say that p flows from ¢ to ¥ with respect to M : E,C, u
when for all i € {0,1}, for all pairs of tape p Rg‘ w P, and memory p such that M, n, p, u

i then M, p, i = i where /= (B oo
ol ilg
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Definition 28 (Computation). We say that p computes u > v with respect to M : &,C, ¢
when for all i € {0,1}, for all pairs of tape p Rg, w P, and memory p such that M, n, p, u
@i, then p computes t > ¥V with respect to M, n, p, p, i,i in any time.

Definition 29 (Randomness footprint). We say that C captures p randomness with respect
to M : &, @, u, when for alli € {0,1}, all memory u such that M, n, p, u | ¢;, and all tapes

ol RZ’,-,M p, the computations of qugA’:Siu[)_fH[[i']]"’p] relies on global samplings Gg and local
I tiM:&

samplings Lg and

lob s
Gy S {Ouy(n,a) | (na,1¢7) e NIy, c € G}
Ly S {Owy(n.a)|(na T ) e N, ceC}

When it is clear from context, the elements such as model, side constraint systems, etc.
will be omitted. With the above definitions, the validity of a bideduction judgement can
be re-written as follows.

Theorem 3 (Bideduction judgement validity characterization). The bideduction judgement
&,0,C(py)rurvy (5.2)

is valid in Mg if and only if there exists a program p such that for all M extending My
such that M £ © A Valid(C),

1. p is a PTIME adversary against G;
2. C is well-formed relatively to u, ¢.
3. p computes u > v.

4. p flows from @ to ¥ ; and

5. C captures p randomness.

In that case, we say that p witnesses the validity of Eq. (5.2).
Finally, Eq. (5.2) is valid if it is valid for any library model.

The following definition identifies classes of programs for which the properties of this
section holds (almost) trivially.

Definition 30 (Basic program). We call a basic program a program that does no oracle
calls, does not access the special variable b nor game variables, and samples only in the
tape labelled Ty X

5.3.2 Validity and well-formedness lemmas
First, let us start with lemmas to propagate validity and well-formedness properties.

Lemma 4 (Constraint inclusion). Let C and C’ be two constraint system such that C € C’.
Then for any model M,
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1. Valid(C’) [ Valid(C),

2. for any random tape p : Ng’p c Nglp

3. ﬂg,’MQRZ,M, and

Proof. The validity of Valid(C’) | Valid(C) directly comes from the fact that for any
constraint ¢1 and ¢ in C, we have that ¢1 and c9 are also in C’, and by validity of C’, we
get [Fun(cy, c2) AFresh(cy, c2) AUnique(cy, c2)]e. The fact (2) is immediate with Ng’p and
NZP’s definitions and the fact (3) directly follows from the fact 2), that is N3* € NS, O

Similarly, we have the following lemma

Lemma 5 (Cosntraints composition). For all M and constraints system C' and C%, we
have:

« Valid(C' - C?) | Valid(Ch) A Valid(C?),

o forall j € {1,2}, Rgl.cz,MgﬂZ‘J‘,M’ and

o forall j € {1,2} and random tape p : Nng - Ng’fCQM

We have similar properties for constraint generalization:
e Valid([T(x : 7).C) [ ¥(x : 7). Valid(C)

« forallae(r]}, R CR!

n
[T(x:7).C,M C.M[xt>a]

e foralla €[]}, and random tape p:

Ngzgﬁ[xi—»a] S le—][’ﬁv ).C.M

The proof is similar to the proof of Lemma 4.

We have similar results for well-formedness properties. In order to prove such properties,
we need to be able to compose the inherent functions coming from the well-formedness
definition of different constraints systems, and, as such, we need helper functions. Especially,
we need functions to restrict random tapes (see Lemma 6 below).

For the rest of this subsection, we fix an arbitrary set of formulae ®. All mention of
models M will implicitly be such that M : & E ©.

The following lemma enable to re-restrict random tape, which is the key lemma for
the two main lemmas of this subsection: Lemma 7 and Lemma 9.

Lemma 6. For any model M and security parameter n, for any vector of terms ii and
assertion ¢ for any sequences of constraint instances | and I well-formed relatively to u, ¢
such that I’ C 1, there exists a function g such that, for all random tape p and memory u
such that M : E,n, p, 1 E ¢,

g(,0|M,n,1, W]]g,fg, M) = PM,,1"-

Proof sketch. The offsets used by [ are all computed step by step using well-formedness
propert, then we keep only the offsets share by I” and zeroes all the other offset in p. O
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Next, we introduce the lemmas allowing to compose constraints systems.

Lemma 7. For any term ii and v, assertions ¢ and ¢?, for all constraints system C*
and C? such that

8,0 Eyrm ) Cl and 8,0 Eyep s ,2) C
then whenever there exists a function s such that for all logical random tape p, memory u
such that M : E,m, p, 1 | @1, and lp1 witnessing the well-formedness of Ct,

s(opttgs [l g 1) = 1, V107

with M : &,1, p, i1’ | ¢* then
8.0 Eyra ) CH-C

Proof. Let M be a model. By hypothesis, C! is well-formed w.r.t. M, 5 relatively to i, ¢'.
Let Io1 be a sequence of constraint instances witnessing its well-formedness relatively
to i, ¢'. Similarly, let /-2 be the sequence of constraint instances witnessing the well-
formedness of C? relatively to i, v, ¢?.

Then, let us show that the concatenation of the two sequences [o1 - [2 witnesses the
well-formedness of C! - C2.

Let

lov - g2 = ((d1,c1), ..., (dk. ck))

and (dx,cx) = (ax, (@,n,t,T, f)) be the k" element of o1 - g2,

We must show that:

3g,Vp, 1 such that M : &,n, p, 1 E ¢
then g(p|Mnlk’ [[u]]M & M w) =[] f)]]&?&r—ﬂt", & (5.3)
ak

with lk = ((671, Cl), ey (a/:_l, Ck—l))-

If (@, cy) is an element of /51, then this is immediate by well-formedness of C'. Thus,
assume that (@, cx) is an element of Ip2. Let then K' be the length of o1,

Let p be an arbitrary random tape, and u a memory such that M : &,1,p, 4 E ¢
Furthermore, let ¢’ be the memory output by s, i.e. such that

s(opay, lo1 [[u]]M &M =, [[g]]gjlps

By hypothesis, we have that M : &,n, p, 1’ E 902, hence, by well-formedness of C?, we
have that there exists g. such that:

gc(p|M,q,122’ [[I/_Z’V Mg,’:u ) = [[(t | f) M[m—)ﬂ" I:& (54)

with I8, = [(agis, cxie) - - (ak1, c-1)].
So finally, let g’ be the following function

g,(p|M,n7l’é2ap|M,7],lcl’ [[ﬁ]]&pg’ ,U) ::/J,? V — S(pIM,n,lcl’ [[I’_[]]&ps’ ,U) (55)
gc(p|M7]lk ’([[u]]Mg’ V)aﬂ,) (56)

The function g’ is then almost the target function g of Eq. (5.3). We are left to show there
exists functions that return the argument for g’, and composing these function with g’
will end the proof. Hence, we are left to show that
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o there exists a function that return Pk, when given ppy, x;
AL s

* there exists a function that return ppy;, when given ppy, .

These two points are consequences of Lemma 6. ]
Lemma 8 (Well-formedness transitivity). Let constraints system C' and C? be such that
&0 Ewra)Cl and E,0 Eyra s ,2) CP.

Assume there exists p a program and ¢ an arbitrary assertion such that
1. p computes ii > v w.r.t. CL, ¢!
2. p flows from @' to ¢*> w.r.t. C',i
3. C' captures p’s randomness w.r.t. @, ii

Then 8,0 Fyrg 1) C' - C.

Proof. Proof sketch. This is a consequence of Lemma 7: we build the function s using the
program p. O

Lemma 9. For all M : & and n, for any term u, assertion ¢ any fresh variable x of type
tagged enum, for all constraint system C,

if &, (x:7),0 Ewr(iix.gC then 8,0 Fyweag ) [T C.

Proof. Let M : & be a model, and n be a security parameter. For all v in || ]]gﬂ, let I, be

the sequence witnessing the well-formedness of C w.r.t. M, def M[x +— 17]. We write [V

the sequence obtained from [, by replacing each constraint instance

(@, (a,n,t,T,f)) by ((v,ad),((x,a),n,tT,Yf)).

The type 7 is enumerable. Then let (vq,...,v;) be a sequence of all elements of | ]]g/ﬂ
Finally, let /the concatenation of sequences [! - - - ["/. We are going to show that / witnesses
the well-formedness of [],.,, C.

Let j be an integer in {1...J}, let then léj = ((a1,c1),...,(dk,ck)), and [/ =
((vj,ai,c}),....(vj,dk,ck)), and let k be an integer in {1,...K}. Let us show that
there exists a function g, such that for all random tape p and memory u such that

M : S’U’p’ﬂ |: (,0,
g(le’n7ljvk’ [[l/_i]]gﬂ’lf)g’ /’l) = [[(t | f) &/Exr—)ﬂ” '(17]("—)1,7]
vj’ a
with 17k = 1. v vik and

1k = (v, @, €D (v A €y

By well-formedness of C relatively to (i, x), ¢, w.r.t. M, ;,n, there exists g, such that for
all random tape p and memory u such that M, : &, 1, 0, 1t [ ¢,

" n.p — .
gV(levi,n,léj’k’ [[M,X]]MVJ_,/J) - [[(t | f)]]MvaJk'—?ﬂZk]'
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with 17 = (@, ¢1),...., (a1, c-1)). Notice that My, [d - 17 ] = Mlx - 10 @i

171, and [@.x]7 = ([a]2f%.

that outputs pIMVj,n,lznj’k from ppy, 1k, [[ﬁ]]gﬂ’[’pa,vj and u. First, notice that in 1Y%, all

v;). Then, it remains to show that there exists a function

instances bind the variable x to v;, then N"* =N ' and thus p vik = Pk
M"j’lcj’ M, |Mvj,77,lc >
and we conclude using Lemma 6. O

5.3.3 Memory flow lemmas

Lemma 10 (Constant memory flow). Let M : & be a model. Any basic program p flows
from @ to @ w.r.t. M : &, C,u, for all assertion ¢, constraint system C, and input vector
u such that the assigned variables in p are not in @.

Proof sketch. The program p does not make any oracle calls and, as a result, leaves the
game memory unchanged. Additionally, it does not modify any variables that are in ¢, so
any memory u that satisfies ¢ before p is executed will continue to satisfy it after. O

Lemma 11 (Memory flow weakening). Let p be a program, such that p flows from ¢ to ¢
w.r.tM: &,C,u, for a given M : E, ¢, ¥ and u,
Let " ¥’ be assertions, let C be a constraint system such that

M:EECCC
M:EE ¢ = ¢
M:EE Yy =y

Then p flows from ¢’ toy’ w.rtM: &E,C,u

Proof. Let X be a sequence of input variables for p. Let i € {0,1}, and p, p a pair of tapes
such that p RZ,[,’M p, and u a memory such that M, n, p, 1 | ¢!.

By Eq. (5.7) and Lemma 4, we have RZ,_, wCRE 1 hence p R

By Eq. (5.8), we have that M, n, p, u E ¢;.
Then, since p flows from ¢ to ¢, we have that M, n, p, 1’ | ¢;, where ¢/ = (]p))

n
cm P

n.p

M:E ul Xl ] ]

Hence, by Eq. (5.9), we have that M, n, p, 1’ [ ¢, which ends the proof. O
Lemma 12 (Memory flow composition). Let p and p’ be programs such that

e p flows from ¢ to ¢’ w.rtM:&E,C,u,

e p computeu >v w.r.t. M: E,C, ¢, and

o p’ flows from ¢’ toy wrtM:E,C,¥

for M : & a model, ¢ ¢’ ¥ assertions, C a constraint system, & and v vectors of bi-terms.
Then p;p’ flows from @ to g w.rt M: &E,C,u.

Proof sketch. Program p; flows to the pre-condition of ps. The additional hypothesis
ensures that the hypothis on the flow of ps can be used to conclude. O
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5.3.4 Computation lemmas

Lemma 13 (Computation weakening). Let p be a program such that p computes u > ¥
w.r.t M : E,C, ¢ for some arbitrary M, C and ¢.
Let C' and ¢’ be such that

e M:EECCC

e M:EE ¢ =0
Then, p computes u > v w.r.t M: E,C, ¢’ .
Proof sketch. We have RZ”,MQRZ‘,M and all memory p that verifies ¢ verifies ¢’. O
Lemma 14 (Computation composition). Let p; and pa be programs such that

o p1 computes i >V w.r.t. C', ¢

o p1 flow from @ toy w.r.t. C',u

o po computes v > w w.r.t. C2,

Then p1;p2 computes it > w w.r.t. Ct-C?, .

Proof sketch. Program p; computes the input for ps, which computes the output w from
it. The additional condition in the flow of p; ensures that the computation hypothesis for
p2 can be used for any memory reached after executing p;. |

5.3.5 Adversary lemmas

Lemma 15 (Basic PTIME adversary). Let p be a PTIME basic program. Then, p is a
PTIMFE adversary against G.

Proof sketch. Program p is PTIME and does no oracle call. |

Lemma 16 (Adversaries basic composition). Let p be an adversary against G. Let p’ be
a basic program. Then p;p’ (resp. p’;p ) is an adversary against G. Furthermore, if p is
PTIME, then p;p (resp. p’;p) is also PTIME.

Proof sketch. We compose an adversary with a basic program: this does not change local
and global randomness usage. O

Lemma 17 (Adversaries composition). Let p; and py be PTIME-adversaries against G,
such that:

o C' captures p1 randomness w.r.t. @,

C? captures pa randomness w.r.t. 1//,17 ,

p1 computes i > v w.r.t. C, ¢,

p1 flows from ¢ toy w.r.t. C',u,
M : & E Valid(C! - C?),
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Then p1;p2 is an adversary against G.

Proof. Let M be a model, let i € {0, 1}.

Let p RZ‘,M p be tapes and let then x4 be a memory such that M : &,1,p, u EA ¢;.
Suppose that the execution of p;ps violate the conditions to be an adversarial behaviour.

Let assume that it violates the freshness constraints. That means that there are two
moments during the execution where the same offset is used for and oracle samplings that
should be fresh. If this happens both in p;’s (resp. pa’s) execution, then this contradicts
the fact that p; (resp. pz2) is an adversary. Otherwise, by footprint properties, we have
that this offset is of the form OKAI(n, a) and that (n, a,T'é‘c) is in Ng’lp and Ng;p. In that

case, this violtes the validity of Cl.1 . Cl.z.
The same reasoning works if the consistency of global sampling is violated.
Hence, p1;p2 is an adversary. ]

Lemma 18 (Adversaries composition). Let p be an adversary against G, (x : ) a variable,
such that, M : & | Valid([I(,..)C). For all model M and element a € | ]]gﬁ, C captures p
randomness w.r.t. M[x — 11, u,x and M : & |= Valid([]x.,) ©)-

Then for any list I of elements in 7], assuming p does not modify I the following
program is an adversary:

1 while l # [] do

2 p;
3 1 « tail I;

Proof sketch. We use the same reasoning as in the proof of Lemma 17. |

5.3.6 Footprint lemma

Lemma 19 (Footprint basic). Let p be a basic program. Then O captures p randomness
with respect to @, u for any ¢ and .

Proof. Immediate: p does no oracle calls, so the global and local samplings set are
empty. m|

Lemma 20 (Footprint weakening). Let p be a program such that C captures p randomness
w.r.t. @,u. Let C' and ¢’ be such that

e M:EECCC
e M:EF ¢ =
Then, C' captures p randomness w.r.t. ¢, u.

Lemma 21 (Footprint composition). Let p; be a program such that C' captures p;
randomness w.r.t. @,u and py be a program such that C? captures pa randomness w.r.t.
¢’,v. Furthermore, assume that

e p1 computesu >v w.r.t. C,¢ and
e p1 flows from ¢ to ¢’ w.r.t. C,u.

Then C' - C? capture py; pa randomness w.r.t. @, 1.
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5.3.7 Structural rules

The next sections, and last, are dedicated to the soundness proof of the proof system’s
rules. This section concentrates on structural rules.

The structural rules have the particularity that the program that comes from the
premise witnesses the validity of the conclusion, up to basic operation on the return values
of the program. Roughly, the witness program of the conclusion only restructures the
outputs. All the rules are in Figure 5.1.

Rule REFL

Proof. Let p be the following program, with X, X, its input variables:

1 return X;

Let us show that p witnesses the validity of €,0,0, (@, @) F u,t > t.
1. pis a PTIME adversary against G;

2. p flows from ¢ to ¢ w.r.t. 0;

3. p computes u,t > t;

4. @ captures p randomness; and

5. 0 is well-formed relatively to u, ¢, ¢.

Proof of (1) Immediately, p is PTIME and a basic program, so, by lemma Lemma 15,
p is an adversary.

Proof of (2) By lemma Lemma 10, p flows from ¢ to ¢.

Proof of (3) For all memory y, the execution of p yields the memory p[res — p(X;)].
In particular, for any side i € {0,1} and any tapes p, when executed with u[X
il T e, X = (2], p yields the memory u[X = [u ], Xi = [t]1} e res = [2]77 1,
which concludes the proof.

Proof of (4) p does no random samplings. Hence, any execution of p relies on empty
global and locals samplings, that is : Gg =0 and Lg = 0. Furthermore, for all p, we have
Ng’p = #(0;0). In conclusion, C captures p randomness.

Proof of (5) The empty constraint system is always well-formed, see Definition 22. O

Common proof sketch
All structural rules, except REFL are of the form

GENERIC.STRUCTURAL-RULE
E,0,C (o) runvvy
P

E,0.C, (¢ Y+ W > v
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With # a premise that is not a bideduction judgement such that # implies
(P1)BECCC

(P2) OO

(P.3) E,0E ¢ = ¢

(P4) E,0E Yy = y'.

Indeed, for all rules, these statements are either directly elements of P or C'=C, ¢’ = ¢
and/or ¢ = ¢’, which trivializes them.

In this section we present a generic gap-fill proof of the rule GENERIC.STRUCTURAL-
RULE. This proofs will rely on extra-hypothesis (noted (H1),(H2), etc.) that we define
and assume along the way (the gaps in the proof) and definitions. Also, each proof will
consist in exhibiting a witness program p’ for the conclusion. In our generic gap-fill proof,
p’ is left unspecified.

Each proof for any structural rules will then consist in providing a program p’ and
poving the hypothesis for their specific cases.

Proof. Let p be a program that witnesses the validity of the bideduction judgement in the
premises of the rule.

Target proof. We want to prove that there exists a program p’, such that for all M
such that M E © A Valid(C) we have :

—_

. p’ is a PTIME adversary against G;

p’ flows from ¢’ to ¥’ w.r.t. CI,L:’;

no

&

/ _)/ _)I 4 /.
p’ computes u’ > v’ w.r.t. C/, ¢’;
4. C’ captures p’ randomness; and

5. C' is well-formed relatively to l:', ¢

Let M be a model, such that M | ©®” A Valid(C’). By £ and Lemma 4, we then have
M E © A Valid(C).

Hypothesis. Using bideduction premises, by (H1) we have that
(Hadv) p is a PTIME adversary against G;
(Hflw) p flows from ¢ to ¢ of the premises w.r.t. C,u;
(Hcomp) p computes # > ¥ w.r.t. C,p;
(Hrnd) C captures p randomness; and
)

(Hwf) C is well-formed relatively to @, ¢.
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Let us define (H1) ' The program p’ is of the form py; p; p2 where p; and py only
do operation assignments on fresh variables, without any random sampling, oracle call or
while loops. Let us assume (H1).

Furthermore, let X be input variables of p, )21 be input variables of py, and )Zg be input
variables of py. Let us assume the following two hypotheses:

. (H2)d§f p1 computes W > i wrt 0, ¢’ and its output variables are input variables
of p.

. (H3)d§f po computes ¥ > v wort 0, Y and its input variables are output variables

of p.

Proof of (1) By (H1) we have that p’ is of the form pi;p;p2 with p; and py basic
programs without while loops. Furthermore, by (Hadv), p is a PTIME-adversary against
G. Hence, by Lemma 15 p’ is a PTIME-adversary against G which ends the proof.

Proof of (2) By the consequence of P, we can weaken the constraint system, pre- and
post-conditions by Lemma 11, and we are left to show that
p’ flows from ¢ to ¥ w.r.t. C,u.
Then, by (H1) and Lemma 10 we have that

p1 flows from ¢ to ¢ w.r.t. C, u
po flows from ¢ to ¥ w.r.t. C,v

Also, by (H2) and by weakening with Lemma 13 and P

p1 computes w' > i wrt, C.o
We end then the proof by composing memory flows through Lemma 12, using above

results and (Hflw).

Proof of (3) By the consequence of P, we can weaken the constraint system, pre- and
post-conditions by Lemma 13, and we are left to show that

p’ computes w > v Wt C, .
By (H2) and by weakening with Lemma 13
p1 computes W > i Wt 0,

By (H1) and Lemma 10 we have that

p1 flows from ¢ to ¢ w.r.t. 0, u
By (H3)
po computes ¥ > v’ w.r.t. 0,9

We end then the proof by composing computation through Lemma 14, using above
results, (Hflw) and (Hcomp), and observing 0 - C -0 = C.
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Proof of (4) By weakening Lemma 20 on footprints we are left to show that

C captures p’ randomness w.r.t. ¢, i

By (H1) and Lemma 19, we have that @ captures p; randomness w.r.t ¢, u’ and

p2 randomness w.r.t ¥, V.
By (H2) and by weakening with Lemma 13

p1 computes w' > i wrt, 0,
By (H1) and Lemma 10 we have that
p1 flows from ¢ to ¢ w.r.t. 0, u

We end then the proof by composing footprint through Lemma 21, using above results,
(Hflw) and (Hcomp).

Proof of (5) Let (H4) be that (5) directly follows from #.

Proofs’ specific parts

Now, for each rule, we give the program p’, and the proof of the hypotheses (H1), (H2),
(H3) and (H4) when they are not immediate.

Rule WEAK.CONSTR

L ps

Rule WEAK.COND Let Xy, (X7, X)), X,, be p’s input variables.

I p;
2 X5 < if Xy then X,
5 return (Xz, Xres), X

The hypothesis (H3) comes from the fact that when &,0 + [f = f’]e, then &,0 +
[if f then (if f’ then v) =if f then v]e.

Rule WEAK.MEM

L p;

Rule WEAK.HYPS

Lps

Rule PERMUTE Let Xi,---X,, be p’s input variables and let Yi,---Y, be p’s output
variables. Similarly, we let X{,--- X be p"’s input variables, taken fresh, and let Y], ---Y;
be p’’s output variables.
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1 X7 «— X:r-l(1);

2
3Xm(_X;_
4 p;

5 Y] X:r’(l);

)’

6 :
7Y — X(’r,(n);

8 return Y/,--- Y,

Rule DROP Let X, be prog’ and p’s input variables and let X,, X, be p’s output variables.

L p;
2 return X,

Rule REWRITE-L

Lp;

Rule REWRITE-R

Lp;

Rule DUP Let X, be prog’ and p’s input variables and let X,, X, be p’s output variables.

L p;
2 return X,, X;, X;

5.3.8 Adversarial rules

In this section, we present the soundness proofs for our adversarial rules. These two rules
are justified by simulators performing samplings and oracle calls. The main challenges
here are ensuring that the witness program of the conclusion behaves as an adversary and
that we maintain the validity and well-formedness of the constraint systems.

Rule NAME

Proof. Let p be a program that witnesses the validity of the bideduction judgement in the
premises of NAME, and let X¢, X; be its two return variables.
Let p” be the following program:

L p;

2 if Xf

3 then

1 X, g’éTs[ostetn(Xt)];
5 return X, X,

Let show that p” witnesses the bideduction judgement in the conclusion of NAME.
Let M be a model such that M | © A Valid(C - (0,n,t,Ts, f)).

1. p’ is a PTIME-adversary against G;
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2. p’ flows from ¢ to ¥ w.r.t. C-(0,n,t,Ts, f);
3. p’ computes # > (nt | f) with respect to C- (0,n,t,Ts, f);
4. C-(0,n,t,Ts, f)) captures p’ randomness; and
5. C-(0,n,t,Ts, f)) is well-formed relatively to u, ¢.
By constraint system inclusion Lemma 4, we have that M | ©® A Valid(C). Hence :
(Hadv) p is an adversary against G;
(Hflw) p flows from ¢ to ¢ w.r.t. C;
(Hcomp) p computes # > (¢ | f) with respect to C;
(Hrnd) C captures p randomness; and

(Hwf) C is well-formed relatively to @, ¢.

Proof of (1) By composition Lemma 17, and (Hadv), p’ is an PTIME adversary
against G.

Proof of (2) Immediately we have that M : & | C € C-(0,n,t,Ts, f). By Lemma 11, we
have that p flows from ¢ to ¥ with respect to C- (0, n,t,Ts, f). Let us call p” the program
such that p’ = p; p”. Then p” flows from ¥ to ¢ with respect to C- (0,n,t,Ts, f), (t | f)
by Lemma 10. We conclude by Lemma 12 and (Hcomp), that shows that p; p” flows from
@ to ¥ with respect to C- (0,n,t,Ts, f).

Proof of (3) Letie {0,1}. Let p and p tapes such that p RZ,.(@M' ey P and u such
that M : &,n, p, 1 E ¢;.
Let X be the inputs variables of p, and (X¢, X;) be its output variable and p’ input

variable.

def n,p

Let /= (p)™. 201~ By Lemma 4 we have p R, p and by (Hcomp) we have
M[XH[[M,‘]]M:S] Ci,

1 [X:] = [if f then ¢]77
/J,[Xf] = [[f]]gjlpg
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Let 7 be the type of . We have that

(p; p")"" = (p")7,

plFo i 7] &
(X, & Ts [offseta (X)1)7" if [Xp]7" = true
(]sklp if [Xf]Z’,p = false
i |X o L0500 v, (0w i XD | (X177 = true
if [Xf]Z’,’O = false

{u | X0 > Te1n plly, 10w, [N 71 = true

=,

=

if [ £} = false
f X o [n )55 it [F17 = true
74 if [ f]}}s = false

which ends the proof.

Proof of (4) Immediately, (0,n,t,Ts, f) captures p” randomness with the respect to
¥, (t| f). We conclude using (Hcomp) (Hrnd) and Lemma 21.

Proof of (5) Immediately, (0,n,t,Ts, f) is well-formed relatively to (¢ | f) and any
assertion, so in particular ¥. We conclude by composing well-formedness with Lemma 8
with (Hcomp) (Hflw) and (Hrnd). o

Rule ORACLE

Proof. Let p be a program that witnesses the validity of the bideduction judgement in the
premisses of ORACLE, and let (Xy, X;), (Xr, X,), (Xr, X;) be its return variables.
Let p’ be the following program:

1 p;
2 if Xf
then
Xres < G.f(X_t)[offset; (X,), offsets(X,)]
else

=~ W

5
6 Xpes < Ze€ro;
7 return Xz, Xy

Let us show that p” witness the conclusion validity.
Let M be a model such that M E © A Valid(C’).

1. p’ is a PTIME-adversary against G;
2. p’ flows from ¢ to 8 w.r.t. C’;
3. p’ computes u > w, (v | F) with respect to C’;

4. C' captures p’ randomness; and

98



5.3. Soundness

5. C' is well-formed relatively to u, ¢.
By constraint system inclusion of Lemma 4, we have that M | ©® A Valid(C). Hence :
(Hadv) p is an adversary against G;

(Hflw) p flows from ¢ to ¢ w.r.t. C;

)
)
(Hcomp) p computes & > w, (¢ | F), (6 | F), (5 | F) with respect to C;
(Hrnd) C captures p randomness; and
)

(Hwf) C is well-formed relatively to @, ¢.

Observes that p’ is of the form p;p”. Immediately, we have that p” is a PTIME
adversary against G, and

C” captures the randomness of p” with respect to w, (£ | F), (6 | F), (3 | F)
with € = TTye.globs (0 kus 0 Teors F) - Tlucflocg (0 Fvs 814 TS F). Also
C” is well-formed with respect to w, (£ | F), (6 | F), (5 | F), .
By Hoare triples definition
p” flows from ¢ to § w.r.t. C”;

and
p” computes w, (¢ | F), (6 | F),(§ | F) > (v | F) w.r.t. C”.

Proof of (1) We conclude by composition Lemma 17.
Proof of (2) We conclude by composition Lemma 12.
Proof of (3) We conclude by composition Lemma 14.
Proof of (4) We conclude by composition Lemma 21.

Proof of (5) We conclude by composition Lemma 8.

5.3.9 Computational rules

This section covers the soundness proofs for our computational rules. We won’t detail
every proof, but we still give the witness program. Crucially we made the proof of the
TRANSITIVITY rule and INDUCTION.

For the proof in this section we will need specific programs to handle lists and maps,
that we define here. First, we assume the existence of [] the program constant for the
empty list and of programs tail and head that processes lists such that
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e tail [ returns the tail of list / in constant time, and

e head [ returns the head element of the list [ in constant time.

Similarly, we assume the existence of programs to handle map, that will be used to
store function’s graphs. We let () be the constant program for the empty map and we
write map|[t] and map|t] < y the programs where

o map|t] returns the element labelled ¢ in map map in time O(|t]).

e map|t] < y assigns to the label ¢ the element y in map map in time O(|t|).

Rule LIBRARY

Proof. The term ¢ is in Ly, hence there exists a PPTM M such that M(17, p,) = [[t]]&p6
for all n, for all model M and all logical tapes p = (pa, ph)-

The program language being Turing-Complete, there exists then a program p, with
output variable res, such that

e p; only accesses the tape p[Ty, ].

o for all n, model M and logical tapes o and program tape p s.t. p, is a prefixe of
p[Ta, booll 5 (p)f;ig res] = 2]}

Then, p, witnesses the bideduction in the conclusion. Remark p, does not perform
oracle calls, and samples only on tape Ty X , SO py is a basic program, and

e p; is a PTIME adversary against G by Lemma 15,
o p; flows from ¢ to ¢ by Lemma 10,
e () captures p; randomness by Lemma 19,

And, we immediately have that 0 is well-formed relatively to . O

Rule FA

Proof. Let p be a program that witnesses the validity of the bideduction judgement in the
premises of FA, and let X, (Xy, XH... (Xr, X/") be its return variables.

The function g is in L, let 71 — ---7, — 7 be its type. There exists a PPTM M
such that for all inputs my,--- ,m, in the serialized set of [71]]c x -+ x [ra]],

n e =
M(]- ,mi, mnapa) [[g leﬂ’] lel;le]:a(xl: D (enitn)
for all n, for all model M and all logical tapes p = (pa, Ph).

By Turing-completeness, there exists a program p, with output variable res and input
variable Xé ... Xg such that for p, and all program tape p s.t. p, is a preﬁx of p[Ta, ],
for all inputs my,--- ,m, in the serialized set of [71]"c x -~ X [7,]{}g

(pg)™) [res] = [&]

[X1+—>m1 X2+—>m x1+—>]l,lll x1+—>]1n’,1] E(x1:m1)(Xn:Tn)

Let X, be the return variable of pg, and X,.s a fresh variable, initialized to witness
with 7 type of X,.s. Let p’ be the following program:
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1 p;
2 Xg — X

3

4 Xg — X/

5 if Xf

6 then pg; Xes «— X,
7 return X, X,

Rule IF-THEN-ELSE

Proof. Let X,, X;, Xy, X;, Xf, X, be p’s return variables.

Lp;

2 if Xb

3 then X,.s «— X;

4 else Xyes — Xp;

5 return X_v,X_{res}

Rule TRANSITIVITY

Proof. Let p; be a program that witnesses the validity of 8 0,C, (¢, ¢') Fii >t and po
a program that witness the validity of &, ©, C2 (@' W) Fil,t> V.

Let X, (1 be p1’s fresh input variables and X; (1 be p1’s fresh return variables. Let Xf, X2
be ps’s fresh input variables. Let then p’ be the following program.

1 X2 — X1
2 P1;
3 X2 — X}
4 p2

Let M be a model such that M = ® A Valid(C' - C?). Let show that
1. p’ is a PTIME adversary against G;

2. p’ flows from ¢ to ¥ w.r.t. C'-C?;

w

. p computes @ > Iv;
4. C'- C? captures p’ randomness; and
5. C'- C? is well-formed relatively to i, ¢.

By constraint system inclusion, we have that M £ ® A Valid(C!) and M £ ® A Valid(C?).
Hence,

(Hadvl) p; is a PTIME adversary against G;

(Hflwl) p; flows from ¢ to ¢’ w.r.t. Cl,u;
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(Hcompl) p; computes u > f with respect to C!;
(Hrnd1) C! captures p; randomness;

(Hwfl) C! is well-formed relatively to i, ¢;
and

(Hadv2) py is a PTIME adversary against G;

-

(Hflw2) ps flows from ¢’ to ¢ w.r.t. C?, u,;

)
)
(Hcomp?2) py computes #f > ¥ with respect to C?;
(Hrnd2) C? captures py randomness; and
)

(Hwf2) €? is well-formed relatively to if, ¢’;
Proof of (1) Immediate by composing lemma Lemma 17.

Proof of (2) Let p’ be the following program, with input variables X! and return
variables X2, X;.

1 X2 — xl

2 P1;

3 X2 — X}

Immediately, p” has similar properties than p; (same computation, flows, etc.).
Hence, by Lemma 12, we conclude that p’; p2 flows from ¢ to ¢ w.r.t. C' - C2.

Proof of (3) We conclude by same remarks on properties of program p’ and Lemma 14.
Proof of (4) We conclude by same remarks properties of program p” and Lemma 21.
Proof of (5) Immediate by Lemma 8.

Rule LAMBDA-APP

Proof. We only give the witness program.

Lp;

2 Xr,(Xg, X;)  res;
3 Xres < Xg [X:];

4 return Xy, Xy

Rules LAMBDA and QUANTIFICATOR-O € {V, 3}

The witness program and proofs of rules of LAMBDA and QUANTIFICATOR-O € {V,3}
are very similar. In this part, we prove the 3 in one go. The element for which the proof
differs will be annotated by the subscript {1, 3,V}. The retrieve the proof for one of rules,
this element must be taken for the value of the corresponding rules.
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Proof. The type 7 is enumerable. There exists a machine M, such that for all M and 7,
M(17) computes in PTIME a list [ao, a1, - -+, a,] of all elements of [7]7,.
By Turing completeness, there exist a program p., that computes a list of elements
lag, a1, -+ ,ay] of type 7, covering all space [ ]]KAI
Let library elements
Oifw=24
init,, = {true if w = 3
true if w =V
and
(I[x] <) ifw=2
update,, x t [ =qort/if w=3
andtlifw=V

Let X,,, X be p input variables. Then p; 13} is defined as follows:

L Pr;

2 [ « res;

3 Xyes «— init{,l,g,v};

4 while [ # [] do

X « head [;

Xr, Xe < p;

[ « tail [;

Xres < Update{/l,fl,v} X Xi Xres;
9 return Xy, if Xy then X, ¢

ot

o 3 O

Let M be a model such that M | ©® A Valid([](,..) C). Let show that

L. P'{ A3V} is a PTIME adversary against G;
2. pf{ﬂ,a,\%} flows from ¢ to ¢ w.r.t. [](.) C;
3. pf{/l,a,\%} computes & > (viaavy | f);

4. [](x:r) C captures p’{ 13V} randomness; and

5. [1(x:r) C is well-formed relatively to #, .

with
Ax:7)tifw=21
vp={3d(x:7).tifw=13
Vix:7n).tifw=V

Let M ba a model. Then, for all a; € | ]]gﬁ, we have M[x — 17 ] : E(x : 7) E Valid(C).
Then for all a; € [7]7,,

(Hadv) p is an PTIME adversary against G;
(Hflw) p flows from ¢ to ¢’ w.r.t. C,u,x;

(Hcomp) p computes i, x > £ with respect to C;
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(Hrnd) C captures p randomness;
(Hwf) C is well-formed relatively to @, x, ¢;

all with respect to M[x +— ]lZl] :E(x 7).

Proof of (1) By enum(7), we know that the size of [ and the size of all its elements are

bounded by polynomial in 1, because p, is a PTIME programs with no inputs. By (Hadv)

the cost of p is bounded by a polynomial P(n + |X|) which itself is bounded by P(n + m)

with m = max(|a;|). Then, the cost of all the operation under the while loop is bounded

by a polynomial in 7+ m. Echoing remarks in Section 3.3.4, we have that p” is PTIME.
We conclude with Lemma 18 and (Hadv) that p” is a PTIME adversary.

Proof of (2) It is immediate with (Hflw) by invariant on the while loop on /.

Proof of (3) First, let p’{’/l’a’v} be the following program. Let i € {0,1}, p RZ,—,M p be
tapes and let u be a memory such that M : &, 7, p, u E ¢;.

1 X < head [;

2 X5, X, < p;

3 1« tail [;

4 Xyes — update{/l’a’v} X X; Xres;

By (Hcomp) and assuming update, 5vy is interpreted as expected, we have that when
[[f]]gﬂ[p8 = true, u(b) =i, and the head element of u(/) is a :

:u(Xres) [a = [[ti]]gj{fx,_)a]:g(x: )] ifw=24
(IP:;DK,}[?&# [Xres] = ﬂ(Xres) \ [[ti ?M’Iﬁ[)xrﬁa]:S(x: ) ifw=3

ﬂ(Xres) /\ [[tl KA’I/[)XHG]ZS(XZ ) if w = V

Then, we have then

n.p UNY
[ay — [[ti]]M[xr—)al]:S(x: y ,Adp [[ti]]M[)ﬂ—)an]:S(x: )]

(]P/WDK,}[?&M [Xres] = Vje[O,n]ﬂtiﬂgﬂx'_)ji]:a(x: ) ifw=3
/\je[(],n] [[ti]]gl\j{[)xreji]:(‘)(x: ) ifw=V

ifw=24

and ending the proof is immediate.

Proof of (4) Again, let p” be the same program, and let i € {0,1}, p Rgi’M p be tapes
and let 1 be a memory such that M : &,1, p, u E4 ¢;.

Assume p(b) =i, and the head element of ;(l) is some a;, then by (Hrnd) we have
that the execution of p” relies on local samplings Lé and global samplings Gé such that

' lob ,
Gg C { Owy(n,a) | (n,a,Téov )€ NZIQI[XHQJ], ceC}
Ly < {Ouy(na)| (n,a,TE ) € NZKZI[X,_WJ,], ceC}
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We end the proof with the fact that the program p relies on the local sampling Lg and
global sampling Gg such that

Gg =Ujer1,nG
L$ = Uje[l,n]L

P~ P~

Proof of (5) Immediate with Lemma 9. o

Rule INDUCTION

Proof. Let p’ be the program below.

1 Xt < pr;

21 «— pr Xg;

3 Xpes < ().

4 while [ # [] do

5 X < head [;

6 XfeXthXXres;

7 1 « tail [;

8 Xpes[X] & X

9 return Xz, if X¢ then X, ¢

Let M be a model such that M | ® A Valid([](,..)C). Let show that
1. p’ is a PTIME adversary against G;
2. p’ flows from ¢° to T<(¢t) w.r.t. CV--- [T G
3. p computesu > (vt|f);
4. [1(x:r) C captures p’ randomness; and

5. [ C is well-formed relatively to &, ¢°.

Let M ba a model.
Then, for all a; € [75]7,, we have M[x — 17,] : E(x : 7) [ Valid(C), and for all a; € [7]7,,
(Hadv) p is an PTIME adversary against G;

(Hflw) p flows from Z.(x) to ¢ w.rt. Cu,x(A(y: 7.).(vy |y <x)| f);
(Hcomp) p computes #,x, (A(y : 7,).(vy |y<x) | ) > (vx| fAx<t) wrt. C;
(Hrnd) C captures p randomness;

(Hwf) C is well-formed relatively to @, x, (A(y : 7).(vy |y <x) | f);
all with respect to M[x > 12 ]: E(x : 7).

Proof of (1) We know that the size of [ and the size of all its elements are bounded by
a constant. By (Hadv) the cost of p is PTIME and echoing remarks in Section 3.3.4, we
have that p’ is PTIME.

We conclude with Lemma 18 and (Hadv) that p” is a PTIME adversary.

The rest of the proof relies on the fact that since [ has a value independent of  and p,
the while loop can be inlined and we reuse results of the TRANSITIVITY rule. O
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In the previous chapters, we established a theoretical framework for bideduction.
However, applying our fine-grained proof system to cryptographic protocols by hand is
impractical, especially when aiming to scale to actual protocols. To tackle this issue, one
path is to automate the proofs.

In this chapter, we present our approach: a fully automated proof search procedure,
designed with the idea to implement it within the Squirrel proof assistant. Our choice of
full automation is driven by several considerations. First, our primary goal is to validate
the approach experimentally; thus, developing a tactic-oriented proof search at this stage
would be premature, due to a lot of added interface coding work. Second, by embedding
our proof search in Squirrel, which is a tactic-based proof assistant, we retain the ability
to manually simplify and structure proof goals before invoking the automated search
which preserves part of the advantages of human guidance. Thirdly, our aim is also to
replace legacy cryptographic tactics, which are automatic, so we aim at implementing an
automatic tactic with our automation which is more natural for users of SQUIRREL to use.

This chapter is structured as follows: we give in Section 6.1 a motivating example
which concretely shows the level of complexity we aim for our proof search: memoizing
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game Gy, = { (* defines the games Gy, for b € {0,1} *)
sk & 011, (* initializes sk and € *)
oracle pub() := { return (pub sk) }
oracle left-right(mg,my) := { ré&:
e «— enc my r (pub sk);
{—e:t;
return (if |mg| = |m1]| then e else 0) }

oracle decrypt(c) := { return (if ¢ ¢ £ then dec ¢ sk else 0) }}

x « e assigns x to the value of ¢; and x ¢ assigns to x a randomly sampled value using a
distribution based on the type of x.

Figure 6.1: The CCA2 cryptographic game.

simulators with time-sensitive memory invariants; we define our program library and
assertion logic in Section 6.2; we present in Section 6.3 the basic proof-search procedure
for bideduction, i.e. the component without induction; and we introduce in Section 6.4
our inductive proof-search technique.

6.1 Motivating example: an abstract mixnet

We present first a small but representative example drawn from our most recent and
extensive case study. This example encapsulates what we aim for our automation to
support.

The automation strategy presented here is not our initial attempt. Our first attempt
at automation relied on fixed-point computation [59]. It actually proves to work
for simple examples but quickly appears insufficient for our needs. Indeed, this
approach is blind to the temporal order, i.e. sequencing of protocol actions, and so
it lacked the expressivity required to handle protocols such as NSL, as introduced
in Chapter 1. In fact, these limitations seem to arise whenever CCA2 axiom is
involved.

So, we illustrate the key difficulties encountered when synthesizing simulators for
the FOO protocol [44]. FOO uses unspecified anonymous channel, that can instantiated
by mixnets [63,64], to achieve vote privacy. We use a high-level abstract modelling of
decryption mixnets (in the style of [27]), which works in two phases. In the collection
phase, voters send encrypted ballots to the mixnet, using its public key (pub k). The
ballots are collected by a mixnet sub-process, which decrypts them and stores them into
the ballot-box bb. Here, we consider a simple setting with a single honest voter V and
dishonest voters are not explicitly modelled as we let the adversary play for them. Further,
we let the adversary control V’s vote, which V thus inputs from the network. After the
collection phase, the mixnet sub-process P shuffles the ballot-box bb containing decrypted
ballots, and publishes it.
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system MixNet =

new r; new k | (* sample r and the secret key k *)

Pk: out(c, pub k) | (* publish the public key pub k *)
V: in(c,x); out(c, enc diff(x,dummy) r (pub k)) |  (* voter send its ballot *)

M: 1; in(cy); (* decrypt ballots and store them in bb *)

bb(i) = if V < M i &&
y = enc diff(input@V,dummy) r (pub k)
then inputQV else dec y k) |
P: out(c, shuffle(bb)). (* publish stored decrypted ballots x)

Figure 6.2: An abstract mixnet protocol.

Modelling. We define in Figure 6.1 the CCA2 games for our encryption scheme, where:
(pub k) is the public key associated to a private key k; (enc m r pk) is the encryption of
plaintext m using public key pk and randomness r; (dec c k) is the decryption of ciphertext
c using private key k. The log € prevents the trivial attack in which the left-right challenge
is sent to the decryption oracle.! The CCA2 assumption states that a probabilistic
polynomial-time adversary with access to the game’s oracles has a negligible probability
of distinguishing whether it is interacting with Gy or G;.

We describe our abstract mixnet protocol using Squirrel’s process algebra in Figure 6.2.
We actually define two protocols through two process variants obtained by projecting
the diff operators to their first or second component. The process obtained by projecting
the diff operators to their first component corresponds to our abstract mixnet setting.
We modify the output of the mixnet sub-process M using a conditional that will be
instrumental when reasoning with the CCA2 game, but that does not change M’s behavior:
indeed, (input@V = dec y k) if (y = enc (input@V) r (pub k)). The process obtained by taking
the second projection differs in that V will encrypt a dummy message instead of its input,
and M will “magically” retrieve V’s input when receiving that encryption. This variant is
an idealized version of our protocol.

Cryptographic reduction. It should be quite obvious that an adversary will not be
able to distinguish whether it is interacting with the real or idealized version of the protocol,
assuming that it feeds V with an input that has the same length as dummy.

To formally show that our protocol is indistinguishable from its idealized version, it
suffices to show there exists a CCA2 adversary that can simulate our protocols. More
formally, we want to show the following simplified bideduction judgement:

(&, : timestamp), C, (@, ¥) : 0 > frame@¢

for a valid constraint system C and assertion ¢ capturing the initial memory of CCA2.
For this example, we restrict to a non-adaptive setting in which the adversary must
interact with the protocol along a fixed trace. We define the following timestamps
variables, to capture time points of the protocols, such that a timestamp is an element of
the data-type:
ta=init | Pk |V | M(i) | P

For example, V denotes the timepoint at which the honest voter will send its encrypted
ballot, and M(i) the timepoint at which the mixnet with session identifier i collects,

IThis is actually the extension with the decryption oracle of IND-CPA game mentioned in Chapter 1.
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1 frame, output, input < [ L for t € [init; to]]| (* initialize arrays x)

2 bb « [ L fori € index] (* one more array initialization x)

3 ballotV « None; (* to memoize V's encrypted ballot *)

4 input[init], output|init], framel[init] < empty (* initial timepointx)

5 (* recursively compute input, output, frame and bb )

6 for each r € Jinit; 9] {

7 input[z] <« att(frame[pred t]) (* the adversary computes the input *)
8  begin (¥ simulate output[t] by case analysis on t *)

9 match ¢ with

10 | Pk — output[t| <« G.pub()

11 |V —

12 ballotV « Some (G.left-right(input[¢], dummy)) (* memoize x)
13 output[t] « Option.get(ballotV)

14 | M(i) —

15 (* in the condition below, we retrieve V's ballot from ballotV =)
16 if V. < M(i) && input[t] = Option.get(ballotV)

17 then { bb[i] « input[V] } (* bypass decryption oracle *)

18 else { bb[i] < G.decrypt(input[z]) } (* safe decryption oracle call *)
19 output[t] « empty (* no output there *)

20 | P — output[t] « shuffle(bb)

21 end

22 framel[t] < (frame[pred ¢], output[t] ) (* add output to the frame *)
23 }

24 return (frame[zg])

We have Option.get (Some x) = x and Option.get(None) = L.

Figure 6.3: Reduction to the CCA2 assumption.

decrypts and stores a ballot — we use the abstract type index to denote session identifiers.
Timestamps are ordered by <, and for t # init, we let (pred t) denote the timestamp
preceding t w.r.t. <.

Figure 6.3 shows a simulator § witnessing that the real and ideal mixnet protocols
are indistinguishable up-to some timepoint ¢y by reduction to the CCA2 game (noted
G). On line 1, the simulator S initializes a number of timestamp-indexed arrays to store
intermediate values: output[t] and input[t] store, resp, the output and input of the protocol
at timepoint t; frame[t] is the sequence of all outputs from init to t included. The array cell
bb[i] (line 2) will store the decrypted ballot processed by M(i). Finally, ballotV is initialized
to None (line 3), and will be used to memoize V’s ballot.

The simulator’s main loop (lines 7-23) iterates over the timestamps in the trace Jinit;
to]. For each such timestamp t, the input at time t is obtained (line 7) as the result of an
attacker computation att(-) — modeled as an arbitrary unspecified procedure — taking
all previous outputs as arguments: input[t] = att(frame[pred(t)]). Then, the next output is
simulated (lines 8-21) depending on which action is considered. For t = V, we can call the
left-right oracle — we assume that len (input[V]) = len dummy. For t = M(i), we need to
distinguish whether V has occurred before or not.

If V has not occurred before M(i), then the log € is empty and we can decrypt any message
computed by the simulator, including input[M(i)]: it can thus simulate output[M(i)] easily.

Otherwise, V < M(i), and we cannot decrypt output|[V] because it has been obtained from
the left-right oracle and is thus in the game’s log €. Fortunately, output[M(i)] is written
in such a way that this forbidden decryption is avoided. Note, however, that the simulator
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needs to test whether input[M(i)] = enc diff(input[V],dummy) r (pub k) = output[V], thus it
needs to use again the result of the call to left-right performed in V — calling the oracle
again at this point would yield an encryption with a different random seed. Instead,
our simulator exploits the fact that Option.get(ballotV) = output[V] when V < M(i), i.e. the
voter’s encrypted ballot has been memoized in ballotV.?

Finally, the sequence of all outputs up-to timepoint t is computed and stored in frame|[t]
(line 22).

The above analysis shows two key features (absent from [59]) needed for our simulator.
First, we need simulators that memoize the result of oracle calls across recursive
calls: the value of an oracle call performed in V must be reused later for M(i). Second,
proving the correctness of such a simulator requires an invariant that tracks the value
of the game’s state (here, the log €) after each step of the simulator’s recursive process.
Crucially, time-sensitive invariants are necessary, to express in our example that the log
is empty before V but contains one element after it. Without such an invariant we would
have to show that input[M(i)] # enc diff(input[V],dummy) r k for the else branch, which is
unnecessary.

6.2 Preliminary definitions

In this section, we first set up a standard library for our programs. We then explain how we
use abstract interpretation to instantiate our assertion logic, and we introduce the abstract
operations that go with it. The rest of the thesis — automation and implementation work
— is based on this standard library and assertion logic.

6.2.1 Standard library

We present the assumptions we make on our standard library £ to support pattern-
matching and usual operation on messages. In particular, to support pattern-matching, we
define algebraic data type, and destructor symbols. This solely serves to have a rigorous
framework to match on timestamps, afterward.

Algebraic data-types. An algebraic data-type declaration (ADT) is of the form:

n=cC1iT >
| c9 . i
| Cn - -
c1,...,cy are the constructors of the declaration, and each constructor ¢; takes arguments

of type
We use an axiomatic approach, and see an ADT declaration as a convenient way of
assuming the existence of a number of symbol declarations and axioms in the standard L.

2In our simple example, we could get rid of ballotV and use output|V] instead. However, oracle calls
are generally not directly used as outputs in protocols, which requires the use of memoization variables as
done here.
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First, we assume that 7 is a base type, and that £ contains the symbol declarations:
c1:7] — Cp Ty —

Then, we require that the constructors cq, ..., c, form of partition of 7, i.e. the following
formulas must be axioms:

We assume the existence of destructor symbols that allows to destruct x into one of its
constituent constructor:

head : 7 — di: 17— d, . 7>

We require that destructors and constructors behave as expected using the following
axioms:

/\ V3. head(c; §) =i N\ V5. di(ei §) =5
i i
Finally, we assume that the constructors and destructors are all poly-time:

1

/\ adv(c;) A /\ adv(d;) A adv(head)

Pattern matching. For any ADT 7 with constructors
c1:7] > Cp Ty —

we assume the existence of a pattern-matching construct (match, - with -) symbol over
with type:

match - with - : 7 — (7, = 7,)1<i<n —
We use the following usual notation for match terms:

. 2 def . 2
match ¢ with (¢; i = u;)1<j<n = match 7 with (Ai. Ui)i<j<n

Finally, we require that the interpretation of the match constructs is fixed, and satisfies
the following axioms:

-

(match ¢; @ with (u))1<j<n)y <, = Ui @
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Sets of messages. We assume a (base) type message set and the following symbols:
make: : (7 — (message * bool)) — message set C : message set — message set — bool
U : message set — message set — message set

15; 1 message — message set — message set empty : message set

where we have one symbol make: for each sequence of type 7. As expected, (- ::-) adds an
element to a set, U is set union, empty the empty set, etc. Further, make: is a set builder
where make: (Aa.(z, f)) represents the set of all terms ¢ for any value of @ such that f
holds. We use the following nicer notation for set builders:

ef

(11a: 1% make: (1a.(1, f))

where @ are of type 7. All these symbols have the expected semantics. Notably, if
{t|a@: f} is well-typed in & for any model M of &, n and p, we have that:

m.p . 7.0 _

it otherwise
aef T]]gﬂ

Terms VS expressions. In the rest of this section, we will mix terms and expressions

Note that expressions follow the same structure as terms. The differences are, first,
that terms include lambda constructors, which expressions do not; and more importantly,
they are interpreted in different environments. Expression variables are interpreted as
program variables, using a memory, whereas term variables are interpreted within an
environment.

Thus, another way to view expressions is as terms but that are in a reduced subset of
terms. This is the view we will adopt for the remainder of the thesis.

In particular:

o any function on terms can indistinguishably act on terms and expressions.

o for any expression u, and substitution o of variables toward terms, uo- make sense.

6.2.2 Assertion logic

For our assertion logic, we use an abstract interpretation framework, capturing only
growing sets of terms. Here, an assertion is an abstract memory that represents a set
of concrete memories. We define in this section the abstract objects, the concretization
and abstraction functions, as well as the abstract operations needed to manipulate these
objects.

Symbolic sets

A symbolic set is a term {t | @ : f} of type message set. Also, a list of symbolic sets
S1,...,8, is a normalized representation of the term s; U---U s, and the semantics of
symbolic sets in naturally lifted to unions of symbolic sets.
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Abstract memories

Abstract memories, usually written ¢, 4, ..., are finite maps from (program) variables to
lists of symbolic sets of terms:

def
‘10"//7"' é €|‘,0,(€*—>(S1,...,Sn))

where £ € X must be of type . An abstract memory ¢ may not contain two
bindings for the same program variable €, and we write ¢(¢) the value of £ in ¢. We write
dom(g) the domain of ¢, i.e. dom(e) = @ and dom(¢p, (£ — ...)) =dom(p) U {{}.

Concretization. An abstract memory ¢ represents a set of concrete memories u. For-
mally, this is captured by the satisfaction relation a, which is further parameterized by
the model under consideration, the value of the security parameter, and a logical tape.

Definition 31. Let ¢ be an abstract memory. Then, for any model M, logical tape p and
security parameter n, and program memory u, we let

M,m,p, 1 Ea e

hold if and only if for any x € dom(y), u(x) C [[t,o(x)]]glfa.
(Where we conflate the list of symbolic sets ¢(x) = s1,...,8, and the term s U---Us,.)

Abstract operations. We now equip abstract memories with a number of operations:
inclusion, meet, join, etc.

First, given an environment &, a model M : & and two abstract memories ¢, ¥
well-typed in &, we say that ¢ is included in ¢ in M, which we write &M Fa ¢ C ¢, iff.

dom(yp) = dom(y)
and &M E [¢(x) C ¢ (x)]e. (for all x € dom(¢))

Then, we let &;0 a ¢ E ¢ hold iff. &; M [Fa ¢ E ¢ for any model M such that & M p 9.
Note that C has the same definition than = defined in Chapter 4. We rather use C than
= from now on since C is more natural when dealing with sets.

We write ;0 Fa ¢ AE Y if E;:0 Fa ¢ T and E;0 Fa ¢ E ¢. Finally, we will omit
& and O when they are clear from context.

We consider the following (syntactic) meet and generalization operators on symbolic
sets:

(tla:fing® tl1a:fag
def

Vx{t|a:f}= {t|xa:f}

We lift the operations - M g and Vx.- to lists of symbolic sets in the expected way, e.g.

def
($1,...,8,) Mg = (s111g,...,8,718).

114



6.2. Preliminary definitions

We also extend these operations to abstract memories, which we further equip with a join
operator Ll:
def
erg = (€ o) M8)rcdome)

def
V. < (f = Vx-‘P(f))fedom(tﬁ)

def
eUY = (£ 9(0,9(D) redom(p)ndom(w)

where in the U rule we assume dom(¢) = dom(y).

Properties. We summarize here a number of expected properties of our operations on
abstract memories.

Proposition 5. We have the structural properties:

e [ and U are commutative and associative.

15 transitive.

Ir

e M distributes over U:
(puy)NgeE(png)u(yng)

o Y distributes over LI:
Vx. (p Uy) HE (Vx. @) U (Vx. ¢)

o [1 preserves C:
@ C ¢ implies (¢ g) C (Y M g)
o LI preserves C:
@0 E Yo and ¢1 E ¢ implies (oo U ¢1) E (Yo L Y1)
c ¢NTHF

« if E g0 © gile, then oM go sF ¢ M g1
We omit the details of the proof, which are straightforward.

We also have the following additional properties, one commuting V and M, the other
pushing a LI downward by turning it into a logical or V.

Proposition 6. We have the commutation properties:
e (A)Vx.(¢Mg)dE oM (Ix.g) when x ¢ fv(p).

« (B) (pNgo)U(png) sdE¢n (g Vg

Again, we omit the details.

Finally, we lift abstract memories, the |4 definition and the above properties to
bi-abstract memories, as explain in Chapter 4 and from now on drop the "bi" prefix. Also,
in practice, we will always define bi-abstract memory through bi-symbolic sets, that we
directly define by:

def
e, = €|l @, (L (s1,...,8,))

(Note that, in this particular case, the left and right abstract memories have the same
domain.)
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Abstract set evaluation:

def |4 if x ¢ dom(y)
evaly, (x) =
stU---Us, @) =581,...,8,
evaly(sg U 1) def evaly(s9) U evaly(s1)
evaly(t ::s) def {t10,T}
U evaly(s)

eval, (empty) .

evaly(s) def 4 (if no other rule applies)
Abstract boolean evaluation:
def N
b'eva|<p(t ¢ S) = /\([)},t’,f)eevalso(s) Va. f = (t o t’)

b-eval, (f A f') ef b-eval, (f) A b-eval,(f')

b-eval,(f V £) € beeval,(f) V b-eval,(f7)

beval,(T) & 7T

b-eval, (L) e

b-evaly, (f) def 4 (if no other rule applies)

Note that failure ; propagates up-ward, e.g. eval,(s) fails if any sub-term of s fails to ab-

stractly evaluate.

Figure 6.4: Abstract evaluation functions.

Abstract Evaluation

Given an abstract memory state ¢ and an expression s of type , the abstract
evaluation evaly(s) of s in ¢ is either a term of type , or 4 if the evaluation
failed. It is defined in Figure 6.4.

Given an abstract memory state ¢ and an expression f of type , the abstract
evaluation b-eval,(f) of f in ¢ is either a logical term of type , or 4 if the evaluation

failed. It is also defined in Figure 6.4.

The abstract evaluation functions are sound approximations of the evaluated expressions.
This is captured by the following property, where: i) states that eval(-) is a sound over-
approximation of sets of bit-strings; and ii) states that b-eval(:) is a sound boolean
under-approximation.

Proposition 7. Let s and f be expressions of type, resp., and such that
evaly(s) # ¢ and b-eval,(g) # 4.
Then, for any model M, logical tape p = (pa, pp) and security parameter n, side i, for
any u such that M, n, p, u Ea ¢, we have:
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e 1) the set inclusion [s]gﬂp. C [evaly(s)]7

o i) if [b-evaly () s then | ]?Mpz/l

where p is the program tape filled with zeroes but for the sub-tape Ty, , which is equal
to pa; and where Tz are the type of @.

Proof. The proof is by structural induction over the term s, and directly uses Definition 31
in the variable case. O

Remark 1. In practice, we use a more complex boolean abstract evaluation function
b-eval(-) that also computes an over-approrimation of a boolean expression g. Concretely,
reusing the notations of Proposition 7, we have b-evaly,(g) = (g1, 87) where g., 8+ are
logical formulas such that:

o if [gliy;, then [gr]ifs:

C L8l then 8117,

Computing an under-approrimation allows to support more boolean program, notably
negation —, which simply swaps g+ and g, .

The abstract evaluations of an expression boast a stability property, in the sense that
if they succeed (i.e. do not return 4) on some abstract memory ¢, then they will succeed
on any abstract memory ¥ which has the same domain as ¢. Formally:

Proposition 8. For all abstract memories @, such that dom(g) = dom(y):
o for any expression s, evaly(s) # 4 if and only if evaly(s) # 4,
» for any expression f, b-evaly,(f) # 4 if and only if b-evaly (f) # 4.
Proof. This is an immediate induction over the definition of, resp., eval(-) and b-eval(-). O

The abstract evaluation function is monotonous w.r.t. the C ordering on abstract
memories.

Proposition 9. Let & be an environment & and @ some hypotheses. For all abstract
memories @, ¥ and expression t w.r.t. &, if evaly(t) # 4 then:

ifEOEQEAY  then &;0 [Eevaly(f) C evaly ()
Proof. This is an immediate induction over the definition of eval(-). O

Proposition 10. Let & be an environment. For all same-domain abstract memories @, @
w.r.t. & and expression t, if evaly(s) # 4 then:

& F evalyy, (s) C evaly(s) U U @ (x)

x€evars(s)

117



Chapter 6. Automation

Proof. We show this by induction over the definition of eval(-). In the variable case, we
have:

evalgg, (¥) = (¢ U ¢g) (x)
= ¢(x) U py(x)
= evaly,(x) U ¢@y(x)

The empty case is trivial. In the union case, we conclude easily using the induction
hypothesis:

evalyip, (so U s1)
= eVa|¢u¢0(50) U eVa|‘p|_|¢0(sl)
= evaly (50) U ULrevars(sg) o (X) U evaly(s1) U Uevars(sy) o ()
= eva|¢(S() U Sl) U Uxevars(sg)Uvars(sl) 500(x)
= evaly, (5o U s1) U Uxevars(soUS1) Po(x)

(Above, we abuse notations and write a C b instead of & Fa C b.)
The ¢ :: s case similarly follows from the induction hypothesis. O

6.3 Basic simulator synthesis

We present a basic simulator synthesis procedure based on bideduction, that generates
simulators without loops or recursion — it does not use the induction rule of bideduction.

We split the description of the basic synthesis procedure in several steps: first, we
present synthesis queries (Section 6.3.1), which describe the inputs, outputs, and the
specification of the synthesis main loop; then, we design low-level atomic steps of the
simulator synthesis procedure through synthesis query rules (Section 6.3.2); finally, we
present heuristics and orchestrate synthesis query rules to obtain our simulator synthesis
procedure (Section 6.3.3).

6.3.1 Synthesis queries

The rules of Chapter 5 provide basic building blocks for deriving valid simulators but, in
order to obtain a synthesis procedure, we need to determine when and how to use each
rule. We first clarify what parts of a bideduction judgement are, respectively, inputs and
outputs of the simulator synthesis procedure. To this effect, we use synthesis queries of
the following form:

E;0;Ciiprin>gout ~ (0,;,Co ¢, w)

The components on the left of ~»» are inputs of the synthesis procedure, while components
on the right of ~» are outputs. For the sake of clarity, we coloured inputs in black and
outputs in dark red in the query above®. This query is valid whenever the corresponding
bideduction judgement is valid:

E:0;,0,,Ci-Cy; (@, ¥) Fin >g out,w

3To ensure accessibility, colours only encode redundant information.
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Said otherwise, our synthesis procedure takes as inputs a set of hypotheses ®; and initial
constraints C;, a pre-condition ¢ on the state of game G, the simulator’s input in and its
target output out. It attempts to synthesize a simulator S that computes out when given
in as inputs, and returns S’s randomness constraints C,, the resulting post-condition ¥,
further hypotheses @, that must hold for § to be correct, and additional terms w that S
computed while computing out. The extra hypotheses @, are proof obligations that will
be discharged to the user at the end of the simulator synthesis, together with a formula
expressing the validity of the combined constraints C; - C,,.

The additional outputs w are called memoization hints, and will allow to re-use the
result of oracle calls across recursive iterations of our final recursive simulators (see next
Section 6.4). They will be added to inputs of further synthesis queries. To distinguish
them from standard inputs, the inputs of synthesis queries are split into two sequences,
noted in.std and in.memo for, resp., standard and memoization inputs. We may still use
in as a single sequence when the distinction is irrelevant, e.g. ¢ € in means that ¢ belongs
to either of the two sequences.

6.3.2 Synthesis query rules

We design rules for deriving synthesis queries, that provide a higher-level and more
operational variant of the bideduction proof system. The validity of synthesis query rules
can be established by combining several bideduction rules to derive the validity of the
conclusion query from that of the premises.

We make use of a few standard automated reasoning utilities.

Normalization. We assume a weak head normalization function wh nfg(t). In practice,
we only normalize modulo the definitions of & and some basic equations of ®, but
any normalization function ensuring &;0 + [t = Whnfg(t)]e is correct. Because our
normalization only relies on a builtin part of ®, we omit that component for brevity.

Unification. We also use unification: if u and v are terms well-typed in (&,X : T), then
unify?(u =v) is a partial procedure that may return a substitution o mapping a subset of
X to well-typed terms in &, such that &;0 + [uo = vo].. We actually use unification on
bi-terms, with the natural specification. This loose specification may be met by various
unification procedures; in practice we use a simple one which only exploits definitions in &
and basic equations from ©.

The full set of rules used to present our basic simulator synthesis procedure is described
in Figures 6.5, 6.6 and 6.7. We provide here a description of a selected but representative
set of rules.

The UNREACH rule. The UNREACH rule is to be used when the term to be deduced
is under an infeasible condition. The negation of the condition is discharged to the user,
hence it is important to use this rule only as a last resort in an automatic synthesis context:
otherwise, an invalid proof obligation might render the whole synthesis useless. The LOAD
rule. An opposite strategy is used in LOAD: there, we attempt to instantiate an input
AX.(u | g) to obtain the desired output (o | f); we determine a possible value for X by
unification, and we verify automatically that under this instantiation, g is implied by f
(this is denoted Fayto); it then only remains to verify that the values of X can themselves
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Core rules. In the TRANS and CASE rules, C denotes the sub-multiset of C where constraints
with tag T'°c are removed; the remaining constraints may be duplicated without any tmpact on the
constmmts validity.

Conv

in' = whnfg(in) out’ = whnfg(out)
UNREACH E:0;C;p+in' > out’ ~ (O :C';y;w)
E;0;Cprine (o] f) ~ ([-fle; 0; 05 €) E;0;C;p+inout ~ (O;C ¢, w)

TRANS
E:0:C;orin (0| f) » (O;C ;¢ ;w)
E:0;C-Cy' rin, (0" | f)> (0" | f)
> (@//70/”!#//7 ’)
E;0;Cptrinr (0’0" | f)
~ ((E‘)/’ @II;CI . C/I; lp//;wl’w/l

CASE

E;0;Ciorine (¢ | f) > (OC;¥ 5we)

8;@,5 Coifo Finv (0| fAe)~ (Or;Crirswe)
&:0;C-C.-Cr;¥, +in> (0|f/\—|c)w>(G)L,Cl,!ﬁl,wl)
(0} =®ca®T,®J_ C'=C.-Cr-C, w =we,wr, Wi
:(‘pTﬂc)l—'(‘pJ_ﬂ_'c)
E;0;Corin (o] f) ~ (O05C¢";w')
ORACLE

o=unifyf (0=07) o) =(k P hveggobs (2 = (Iv SV ves oc
E;0;C;p+in (0(X), (Pyveg.globs> (SWvef locs | &) w (O;C";9";w)
C’ = (Hveg.glob$(0a kv, OV,Tglc’b,g)) ( vef docs (0, Iy, Sv, TES, g))
gu = b-evaly/(cy o) Y= post‘; (")
&E;0;Ciprin (o] g) w (0,[g = g,l;C - C"5¢;w)

Figure 6.5: Basic proof-search core rules.

be simulated. This rule requires that the implication has been verified, hence there is no
risk of abusive applications as with UNREACH.

The ORACLE rule. The query synthesis rule for oracle calls, ORACLE, is an effective
version of ORACLE; that relies on the following assumptions on oracle f:

o The body of f (in both sides of the game) is a sequence of random samplings of
f.locg, followed by assignations and a final return statement of the form

(return if ¢y then oy else dummy).

The interesting result oy is returned under a condition c; otherwise an irrelevant
constant from L is returned.

o We further assume that the expression oy does not contain memory locations: it
may only refer to the oracle’s inputs, and to local and global samplings.

We let X be the oracle’s input variables. We also let y = G.globg and Z = f.locg for brevity.
The assignation statements in f may refer to the logical variables X, y,Z in addition to
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6.3. Basic simulator synthesis

Destruction rules.

FA.QuANT
NAME Qe {v.3,1} enumyo1y (7)
&E;0;Ciprinr (o] f)~ (05C;¢;w) E;&,x:miprine (0| f) w (O5C 5 y;w)
E:0:C;orin>(nolf) E;0;Ciorin> (Q(x:7).0| f)
> (O;C - (0,n,0,Ts, f);¢;w) o (V. O 1. C'; Vx. i Ax. w)

FA.ITE
E;:0;Ciporine (g f), (00| fAg)(01] fA-g)~ (O5C;¥;w)
E;0;C;pr+in (if gthenogelseoy | f) w (O;C";¢;w)
FA.A
E0;Ciorin (gl f). (g1 ] fAgy) ~ (O5C¢;w)
E;0;Ciprine (ggAgy | f)w (O5Cy;w)
FA. =
E0;Ciorin(go | f), (811 fAgo) ~ (O5C;¢;w)
E;0;Ciprine (gg= g1 | f)w (05C¢;w)
FA.v
&;0;Ciorin (gl f), (g1 f A-go) » (O5Cy;w)
E;0;Ciorine (ggV g | f) w (05C¢;w)
FA
se L &O;Corin (o] f)w (05C;¢;w)
E;0;Ciorine (so| f)w (05C;¢;w)

FA .MATCH
t€in.std

for any i, &,%;0;C;@Fin,X;> (u; | f At =c; %) w (O;;Cis8;;w;)
Oout = (V)_él G)i)i Cout = Hi V)_C)i- C;
Your = LI (VX ¥, 1 (¢ = ¢; X)) Wout = (VX;. w;);
&;0;C; o +in> (match £ with (¢; X; = ;)i | f) > (Oout; Cout; Wout; Wout)

Figure 6.6: Basic proof-search destructive rules.

program variables, i.e. memory locations. Note that, although conditionals are not allowed
in the oracle’s body, they still can be used inside the expressions in assignations. Although
limited, this format is met by the CCA2 game and all cryptographic games that we have
encountered so far.

Given an initial abstract memory ¢ and an assignation £ < e of a memory
location, we can abstractly evaluate e and the resulting memory, to obtain the updated
abstract memory. This can be chained for all assignations in the body of f. We write
post;'r(ga | g) the obtained abstract memory where o is a substitution of domain x,V,Z.
This defines a valid post-condition for a call to f with the values given by o in a context
where g holds and the memory satisfies ¢.

Our ORACLE rule proceeds as follows. First, it does not attempt to syntactically match
the term to be computed with the oracle’s return expression: instead, it matches it with
oy, and discharges a proof obligation which ensures that ¢y holds when the oracle is called.
We thus unify oy and o to determine the values of X, ¥,Z. As before, the values of ¥, Z must
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Memory rule. (For any type T,
we require that (witness, : 7) € L.

We write witness when the type MEMOIZE.STORE .,
is clear from the context.) &0;C prinvout ~ (0C;y;w)

E;0:C;ot+inout ~ (O ;C';¢;w,out)
AX.(u | g) €in.std MEMOIZE.LOAD

Memoization rules.

LoaD

AX.(u | g) € in.memo

= unify$(u =
o = unify? (u = 0) ozunify;:(uzo) ¥ = X\dom(o)

oo = o[X\dom(o) — witness] R
£:0 bauro [f = gorule o emmpey(types ()
£:0:C:orint (Fog | f) w (@/;C;;.ﬁ;w)S;@;C;go Fine (0 | f A (VY. =go)) ~ (O;C;¢;w)

E;0;Ciprint (0] f) w (0C ¢ w) 8:0:Ciprin> (0] )~ (05C:4iw)

Figure 6.7: Basic proof-search memory rules.

be names, and the name indices as well as the arguments (X) must be bideducible.* The
oracle is (implicitly) called with the abstract memory ¢’ obtained after that bideduction,
and only when g holds — which implies g, and then ¢y. The final abstract memory is
post?(lp’ | g). Overall, our synthesis rule is justified using ORACLE, relying on the Hoare
triple

{¢’. g N g tout — Os(o(X))[o(¥); o (2){posti (¢’ | g)}

which is is valid under the assumption [g = g, ]e.

6.3.3 The basic simulator synthesis procedure

Our basic synthesis procedure synthesize, (+) is a (recursive) function which takes the left
part of a synthesis query (its inputs) and attempts to derive it by applying synthesis rules
following a particular strategy. Upon success, it returns the right part of the synthesis
query (its outputs). Our procedure is such that

if  synthesize.(&;0;C; ¢+ in>out) = (0 ;C;y;w)
then &;0;C;¢ Fin>out ~ (Q;C';y:;w) is derivable.

The procedure has four different phases, as depicted in Figure 6.8 and described below.
The phases are applied successively until one succeeds. A successful phase will usually
generate bideduction premises, which are themselves resolved recursively by the procedure.
Our procedure never backtracks: if a phase succeeds but generates invalid bideduction
subgoals, the procedure will fail without trying the next phases. This makes the procedure
less complete but more efficient and predictable. This latter property is crucial in a fully
automated setting, as it helps the user construct an intuitive understanding of why the
procedure failed and how this may be fixed.

The phases are, in the order in which they are attempted:

o The reuse phase checks if the target output out can be directly obtained from the
inputs in.std.

e The oracle phase tries to obtain oeut by calling one of the oracles of the game.

4The samplings variables that were left free after the unification are ignored.
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Start of
synthesize, (-)

}

Reuse phase
Reuse inputs
LoAD

Y

Oracle phase

Call an oracle f of G

Y

Step (A)
Unify the oracle’s output with
the target output

Y
Step (B)
Reuse memoized values
MEMOIZE.LOAD

Y
Step (C)
Refine oracle call

Destruction phase (case—disjunction over
Peel-of a shared global randomness)
top-level construct _ FAITE ‘
NAME, FA, FA.=, ... R .
¥ 3y
Y Step (D.T) Step (D..L1)
Unreachability phase Oggizsg” D(“"@Ct 00721131
Output never needs = n'o oracle
to be computed \\‘ ",
UNREACH Sten (B)

Memoize the result of
the oracle phase
MEMOIZE.STORE

Phases are in boxes with a simple border. Steps of the oracle phase are in boxes with a
double border. Phase/step names are in dark red. Each box includes the main rule they
rely on, when applicable. Simple arrows indicates progression between phases (continue
in case of failure). Dashed arrow indicates progression between steps of the oracle phase
(continue in case of success). All phases and steps may generate new bideduction premises,

which are resolved recursively by synthesize, (-).

Figure 6.8: Control-flow of synthesize, (-).
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o The destruction phase checks if the left and right components of out start with the
same top-level construct, which is then evaluated by the simulator being synthesized.
The arguments of this construct are recursively synthesized by the procedure.

o Last, the unreachable phase let the simulator abandon the synthesis by asking the
user to prove that output out never needs to be evaluated.

We detail each phase below.

Reuse phase

The reuse phase checks if the target out can be directly obtained from standard inputs.
This phase only uses the LOAD rule, attempting to use it on all terms from in.std.
Concretely, it scans the inputs and tries to apply LOAD on each term AX. (u | g) in the
inputs in.std.’

Checking whether LOAD applies is fully automated and only requires a unification and
a call to the automated reasoning solver F,,t0. In case of success, it generates a bideduction
premise that is resolved recursively by the synthesis procedure.

Because this phase greedily uses the first relevant input, it could in principle make
a wrong decision and cause the overall synthesis to fail. We never encountered this
issue in practice.

Oracle phase

The oracles of a cryptographic game are stateful and probabilistic functions. Thus, when
we call an oracle f, we are: i) modifying the internal state of the game; and ii) bideduction
must add constraints indicating that we want to couple the randomness of the oracle with
randomness of the logical target term. Both behaviours can lead to invalid simulators if
we apply the oracle rule too greedily: in the first case, the modified internal state may
prevent us from using another oracle later, e.g. because we wrongly added a value to a log;
in the second case, the new oracle constraints may clash with other constraints existing or
to come. In the oracle phase, we try to avoid such issues with two different techniques.
First, we reuse memoized values as much as possible to avoid recalling an oracle that was
already called (which would introduce contradictory constraints when the oracle has local
randomness). Second, we automatically do a case-analysis to exclude cases that would
add constraints that clash with the input constraints system.

Assume we want to answer the partial synthesis query &;0;C; ¢ + in>g (0 | f) using

. > . - f . . .
®We take the convention that when ¥ is empty, A%.t . With this convention, we can try to apply
LOAD on any terms in the inputs in.
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6.3. Basic simulator synthesis

the game:

game G ={

k& =l

oracle o(X) :={
r (i;
lold — ¢
{—u:d,
return (if ¢y then oy else 0) }

(* other oracles *)

}

We describe how the oracle phase handles the oracle o. For the sake of simplicity, the game
we presented above considers a restricted oracle that only uses a single global sampling k,
a single global state €, etc. Generalizing this to an arbitrary oracle is straightforward.
We further assume that the program variable ¢ does not occur in the branching
condition ¢ f: this is w.l.o.g., since £yg may occur, and € = u :: £yq at that program point.
(Doing so allows evaluating ¢y in the pre-condition ¢, which simplifies the presentation.)

Step (A). In step (A), the returned value (if ¢y then oy else 0) is split between the
condition ¢ and the value oy. Then, we unify the oracle output with the target term by
computing o = unify)izk,r(o r =o0). This substitution o tells us what arguments X should
be sent to o, and how to map the game’s randomness k and r to logical names. More
precisely, we split 0 into 0 args, {k +— k 1}, {r + r t,}, and we require that k and r are
logical names — otherwise, the oracle phase on oracle o fails. Further, we require that
no program variables appear in o, but for k, r and oracle inputs: this ensures that once
we are done instantiating o’s arguments X and the randomness offsets for k and r, the
output oy can be seen as a purely logical term that can be thus injected in the logical
bideduction judgements.

Step (B). The memoization step (B) reuses memoized values by applying the MEMO-
1ZE.LOAD rule on all possible values. Concretely, this refines the cases in which o must be
called by changing the target output (o | f) into (0 | f A fmemo) — for example, we can
have femo = —& if (0 | g) € in.memo, i.e. if we memoized (o | g) from a past oracle call.

Step (C). Step (C) refines f A femo further by exploiting the input constraints C. It

looks in C for a constraint of the form (0, k, tl’{, Tglc;(b, ...), and does on case-disjunction on

f . . .
g de (t, =1). Indeed, in case f; # fx, applying the oracle rule would add a constraint
(0, k, tr, Tél(;cb, ...) which is incompatible with the existing constraint (0, k, t;c, TgG;k;(b, cel) —
as adding this constraint would invalidate the whole proof. Concretely, the case-disjunction

replaces (0 | f A fmemo) With
(if gy thenoelse o | f A fremo)

which is then decomposed using the FA.ITE rule. This yields two main bideduction
subgoals,

(Olf/\fmemo/\gf) and (olf/\fmemo/\ﬂgf)
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which are dealt with by, resp., the steps (D.T) and (D.L).

Steps (D). (D.L) simply does a recursive call to the synthesis procedure bypassing the
first oracle phase, to avoid infinite loops. (D.T) calls the ORACLE rule and must thus
deal with the game’s memory. First, it computes the post-condition ¥ by applying the
update (€ « u :: £) to the pre-condition ¢:

1/ def e{t = evaly(uo[br #(0;1)] : )}

Second, it discharges the condition ¢ as a novel proof-obligation (using the output part
Q) of the synthesis query). This is done by abstractly evaluating ¢y in ¢ to obtain a
purely logical formula, i.e. we add b-eval,(cf) to the outputted subgoals @y. Note that
this step may fail if either eval,(uo[b +— #(0;1)]) = 4 or b-evaly(cy) = 7.

Step (E). Finally, step (E) memoizes the result using the MEMOIZE.STORE rule to
avoid recomputing it later. Importantly, it does not memoize the term computed by the

oracle rule, by rather the term computed by the whole oracle phase. That is, it memoizes
(o | f) and not

(0 |f/\fmemo/\gf)~ (61)

From a precision point-of-view, memoizing the latter would be sufficient. Indeed, when
S memo OF &7 do not hold, we can safely re-run the (sub-)simulators to re-compute the
value of interest — note that we cannot re-run the simulator for (6.1), as it makes a
stateful call to the oracle that cannot be safely replayed. But memoizing the more general
term (o | f) is sound, more efficient (as proving that f holds using Fayto is simpler than
S A fremo A 8¢), and yields simpler proof-obligations in practice.

Destruction phase

The destruction phase checks if the left and right components of out start with the
same top-level construct, which is then computed by the simulator being synthesized. The
arguments of this construct are recursively synthesized by the procedure. This phase
comes after the reuse and oracle phase, meaning that the target output could not be
directly computed. In that case, the synthesis procedure checks if out is of the form
#(A outg; A out;) where A is a term construct, i.e. either a symbol s € X or a lambda Ax.
Crucially, A must be identical on both sides, e.g. it could be a symbol s but cannot be
a pair of distinct symbols #(so;s1). Then, we try to apply a destruction rule for A (see
Figure 6.6). There is a single destruction rule for each possible A, except in the symbol
case s where there are specialized rules that exploits particular properties of some builtin
library functions.

Specialized rules such as FA.= are always prioritized over the generic FA rule. Finally,
we use the CONV rule beforehand to put the left and right components of out in weak-head
normal form, which helps to apply the destruction rules more often. Applying this phase
too early would often lead to invalid simulators: an obvious example of this would be
to use FA on an encryption when it is necessary to obtain the encryption through the
corresponding oracle of the CCA game.
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INDUCTION
t €in.std f ein.std

(&, x: )§®§E§I<(x) F iRy > (u x| fAx< t) ~> (@g; Co; ¥; wo)
E;0 Fa ¢y E L(x0) (E,x:7);0, [x0 < x]e FA T<(pred x) C T.(x)
(Ex:1);@OFAY CI(x) <€l
E;0;Cippin> (ut| f) s (Vx.00;¥x.Co; I<(£); Ax.(wg | x < 1))

We require that u = A(x : 7). ug where 7 is a fixed and finite base-type. We assume a total

order < over 7. We let inec def (in,x,dy.(u y | y < x)). Let xo be the minimal element for <,

and pred x the predecessor of x w.r.t. < for any x (with the convention that pred xy = xq).

Figure 6.9: The time-sensitive induction rule.

Unreachable phase

Lastly, the unreachable phase lets the simulator abandon the synthesis by asking the
user to prove that out never needs to be evaluated. It relies on UNREACH and is used
only as a last resort, as it may produce invalid proof obligations. Moreover, it is always
possible to postpone its application, so our last resort strategy cannot hurt.

More precisely, if out is (u | f), we ask to prove that f is never true by discharging
[=f]e to the user.

6.4 Inductive simulator synthesis

In this section, we i) introduce the inductive synthesis, that embeds the basic synthesis
within a larger procedure to infer inductive invariants, ii) illustrate it through an example
and iii) establish the soundness of this procedure.

6.4.1 Invariant synthesis

Our procedure synthesizes a bideduction judgement whose output is a recursive term.
Recall that, when performing induction, we distinguish between two types of invariants:
memoizing invariants and memory invariants. Our procedure infers the invariants, and
outputs subgoals and constraints system to synthesize a bideduction judgement, for which
the first derivation rules is the INDUCTION rule of Chapter 5. We provide corresponding
synthesis rules in Figure 6.9 of the former rule.

It operates in three phases: the first two infer memoizing invariants and memory
invariants, respectively, while the third phase generates constraints and subgoals. Each
phase builds upon our basic synthesis framework.

Memory and memoization invariants. Assume a function u defined by recurrence
over some type 7 using the well-founded order <. In a beautified syntax:

<:iT—>T—> let rec u (x:7) =ug

where ug is the body of u’s definition.® We let < be the reflexive closure of <.

6As indicated by the bold font, ug is a bi-term. Formally, we have two symbols so and s; defined
by recurrence over x and whose bodies are, resp., the left and right component of uy. Then, we let
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Start of synthesize*(E;0;¢y;CFin>u t)

Y

S |

I Pass 1: infer memoization invariant I

I synthesize, (g F inrec > (w x | x < 1)) = (W x) I
Let inmemo def Ay(wy|ly<xAx<t).

S |

I Pass 2: infer memory invariant
I synthesize, (¢ F ifrec, ifmemo > (1 X | x < 1)) = (Y, wo X) I
I Check that w x = wg x. Let ¢, such that @, M (x <¢t) J=¢. I
Pose I(><,y) =Vx. oM (xyAy<t). I
cFr - - _ ~—--—=-"--""""-"¥""-"-""""—"/"""""""""
I Pass 3: compute constraints and subgoals I
I synthesize (¢ U Z(<,X) F ifyec, ifmemo > (1 X | x < 1)) I
| =(0:;C ¢y w1 x) |

By construction, ' € o U I(<,x) and w x = wq x.

Y

Final output: (Vx.0',¥x.C’, 1(L,1))

We assume u = A(x : 7).ug where 7 is is a fixed and finite base-type. We assume a total
order < over 7. We let ine def (in,Ay.(u y | y < x)). All calls to synthesize,(-) use the same
environment (&,x : 7), initial hypotheses @, and initial constraints C, which are thus omitted.
We also omit components of synthesize (-)’s outputs that are discarded — e.g. in the first

pass, only the outputted memoization hint (w x) is used.

Figure 6.10: Inductive simulator synthesis procedure synthesize[s°(+).

Consider t of type 7, and assume we want to bideduce (u t) from some inputs in.
Excluding degenerated cases, doing so will require to recursively evaluate u on points
x < t. We can build such simulators using the following (simplified) induction rule:

E,x:1;L.(x) +
inx, ly.uy,wy |y<xAx<t)>(ux,wx |x<t)
~w (I<(x))

Eipprin>ut~ (I1(t))

(For the sake of simplicity, we omit the constraints C, hypotheses @, etc.)

There are two key ingredients (in colored boxes) which we describe next.

First, 1 is a memory invariant describing the evolution of the game’s state during the
recursive evaluation of u. It directly comes from the rule INDUCTION. One remark, to
initialize the induction (not shown here) we must ensure that ¢, entails 7. (xg) where x
is the smallest element w.r.t. <.

Second, w is a memoization invariant. Essentially, (w y) represents a set of interme-
diate values that have been computed during the bideduction of (# y) and that we decided

u = #(sg;s1). For the sake of simplicity, we use a single symbol definition u using a bi-term as a body.
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1 let rec output (t : timestamp) =

2 match t with

8 | Pk — pubk and bb (t : timestamp) = 17
4 |V— match t with 18
5 let pk = pub k in IMi— 19
6  enc diff(input V, dummy) r pk let pk = pub k in 20
7 | M(i) — empty let x = 21
8 | P— shuffle(bb) iFV<Mi&& 29
9 and frame (t : timestamp) = (input t = 23
10 match t with enc diff(input V, dummy) r pk) 24
11 | init — empty then input V else dec (input t) k 25
12 | _ — (frame (pred t), output t) in 26
13 and input (t : timestamp) = bb[[i — x] (¥ update cell i +) 2
14 match t with | — — bb(pred t) 2
15 | init — empty

16 | _ — att(frame(pred t))

Figure 6.11: CCSA encoding of our abstract mixnet protocol.

to memoize. Thus, when bideducing (u# x), we may reuse past memoized values (w y) for
any y < Xx.

Invariant inference. Applying the induction rules requires to come-up with a memory
invariant 7 and a memoization invariant (w -).

We define an inductive simulator synthesis procedure synthesize[*“(+) that builds upon
the basic synthesis of Section 6.3. This procedure is summarized in Figure 6.10, and
relies on three passes of the basic synthesis procedure synthesize, (), where the first pass
infers a memoization invariant using the memoization hints returned by synthesize (-), the
second pass computes a memory invariant, and the third and last pass computes the final
proof-obligations @ to be discharged to the user and the constraints C’ guaranteeing the
existence of a probabilistic coupling justifying our reduction.

Crucially, the memory invariant of the second pass is an inductive invariant by con-
struction (see Theorem 4 below). Thus, we do not need to check that this invariant is
inductive.

6.4.2 Example

To understand this technical procedure, let us illustrate it on our abstract mixnet of
Section 6.1. We give in Figure 6.11 a CCSA encoding of this protocol using recursive
functions. Let us reduce the equivalence of the left and right versions of frame 7y to
CCAZ2, where f is some constant timestamp. We unroll the execution of synthesize[*“(¢p, F
0 > frame tg) on the initial memory ¢, = (£ — €) of the CCA2 game. Let # be the inductive
step variable.

Obviously, detailing all passes, phases and steps of our synthesis procedure is not
realistic, and would be too verbose to be of any use. Instead, we let the reader get
an intuitive understanding of how the recursive functions in Figure 6.11 are simulated.
Further, the simulator of Figure 6.3, which we manually wrote, should help intuit what is
going on.
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o Pass 1. After the first pass, we have the memoization hints:

wit (encV |t =V At < ty), (line 6)
Adi.(encV |V <MiAt=MiAt <ty (line 24)
Adi.(decM | ...At=MiAt <t (line 25)

where encV = enc diff(input V, dummy) (pub k) and decM = dec (input t) k. (We omit some
details of the decM hint, as it will not be used.) We annotated each memoization hint with
the corresponding line in Figure 6.11. Remark that the call to the left-right oracle line
24 is guarded by the test V < M i (at line 22), which thus appears in the corresponding
memoization hint. After some simplification, this yields the following memoized values at
time 7:

. def
iNmemo = (encV |V <t At < ty),
Adi.(encV|V<MiAMi<tAt<t)), ...

Note that the second memoized value is subsumed by the first. Since it could be difficult
to parse, the above invariant can be read as follows: when computing u t for ¢ < ¢y, we
have already computed encV if

 V happens before ¢, and/or

e M i happens before ¢ for some i.

o Pass 2. The second pass computes the memory invariant of our simulator. Crucially,
the memoized values in inmemo allow to reduce the number of oracle calls through re-use,
which is critical to simulate our mixnet protocol. Concretely, looking at Figure 6.11, we
see that we may need to call the left-right oracle to simulate the computation at lines 6
and 24. For line 6, this adds encV to £ whenever ¢ =V. For line 24, we know that t = M i
and we are operating under the condition that V < M i (line 22): thus, we can re-use the
memoized value in inmemo, and never need to call the oracle left-right oracle there. Thus,
after some simplifications which we omit, we obtain the post-condition

ot fencV | 1=V AT <10)),

which yields the memory invariant

def
I.() S (- {encV |1 =VAntAL <)),

or equivalently (€ +— {encV |V >t At < 1t9}). By Theorem 4 (presented later), this is an
inductive invariant of our simulator.

o Pass 3. The last pass computes the proof-obligations @ and constraints C’, using the
memory and memoization invariants, resp, 7 and ifmemo. Then, in our implementation,
all generated goals are automatically discharged by Squirrel automated reasoning tactic
auto. We refer the curious reader to [65] (file motivating.sp) for details — invariants in
that file are however less readable than the ones presented here, which have been manually
simplified.
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6.4.3 Soundness

We now state the theorem ensuring the soundness of synthesize*°(-). First, we must
describe the class of cryptographic hardness games supported by our result. We already
saw that we only support game whose global mutable state are logs (or sets) of

values. Further, we must require that there are no complex flows between the different
logs of the game. E.g., a game with two logs ¢ and ¢/, and with an update of the form
{ « ¢ U in one of its oracles, is not supported by our procedure. (To our knowledge,
this assumption is at no loss, as we do not know of any cryptographic game featuring such
patterns.) Formally:

Assumption 1. For any update € < s in an oracle of G, the only global mutable variable
that s may depends upon is {€}.

Finally, we assume that all assertions’ domains cover the game global variables. Then,
our rules never add elements to an assertion’s domain and thus unions of assertions are
always defined.

We can now state our main soundness theorem.

Theorem 4. Let G satisfy Assumption 1. Let u = A(x : 7).ug where 7 is a fized and
finite base-type. Let < be a total order over v such that <€ L,. If

synthesize[*(E;0@; p,;C+in>u t) = (0',C,¢)
and t € in, then we have:
E;0:C;pprin>ut~ (Q:C;y;w).

To make the proof, we will first need a lemma to characterize the stability of the basic
synthesis procedure, that is crucial to our invariant inference approach. The lemma is
presented and proven below.

Lemma 22. If basic synthesis succeeds starting from ¢:
synthesize, (E;0;C; ¢ + in > out) = (Qg; Co, ¥, w)
then for any abstract memory ¢, with the same domain as ¢,

for any @ such that & Ea ¢’ E @ U g,

there exists O, Cy, W' such that

synthesize, (&; O; C; ¢’ + in > out) = (0); Cy, ¥', w)

where & Ea ¥’ T ¥ U @,
Said otherwise, if the pre-condition ¢’ is at-most the original pre-condition ¢ extended
with @, then the synthesis procedure starting from ¢’ yields a post-condition Y that is

at-most Y extended with ¢y. Further, the memoization hints w are left unchanged. Note,
however, that the proof-obligations O and outputted constraints C, may be different.
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Proof. We prove this by induction over the execution of the basic synthesis procedure,
walking synchronously through the pair of executions of synthesize_ () starting from, resp.,
¢ and ¢’.

Then, we analyze each phase of the procedure as described in Figure 6.8 and check that
if the phase succeeds on ¢, then it also succeeds on ¢’ and produces identical outputs, but
for the post-condition ¢’ C ¢ L ¢, the proof-obligations @f, and outputted constraints
C(- During this execution, we must prove that the arguments of all recursive calls to
synthesize, (-) are identical except for the pre-condition, that must be of the form, resp.,

Prec and so/rec - Prec L Po;

o The reuse phase. This phase scans the inputs in the terms in.std, looking for a valid
application of the LOAD rule. The success of this rule only depends on the inputs in.std,
the assumptions @, and the environment &. Thus, it satisfies the wanted property.

o The oracle phase. Consider the application of an oracle o.

First, step (A) decomposes the oracle’s outputs into a condition ¢y and an output
oyr. This decomposition is syntactic and thus independent of the pre-condition. Then,
it unifies the oracle outputs with out, which only depends on out, the game G, and the
environment & (since unification is modulo convertibility in &).

Then, step (B) reuses memoized values using the rule MEMOIZE.LOAD, which only
depends on in and its tagging (more precisely, on irn.memo), and on & (due to the unification
modulo convertibility). Thus, this step refines out into (out | h) for some boolean terms
h, for both executions of synthesize, (-).

Step (C) does a case-analysis to reduce when the output term out is to be computed
using the oracle o. This case-analysis only depends on the substitution o computed in step
(A), and uses the deconstruction rule FA.ITE which is independent from the pre-condition.

(D.L) only does a recursive call to synthesize, (-), which is fine using the induction
hypothesis. Step (D.T) is the most complex step. First, it outputs the updated pre-
condition. Consider the case where there is a single update (£ « s) (the general case is
similar). The post-conditions ¢ and y’ are then:

1/ def e{t — evaly(so[br #(0;1)])}
W E g (e evaly (sob e #(0; D))

We start by observing that as both abstract memories ¢ and ¢’ have the same domain, we
know by Proposition 8 that evaly(s”) succeeds iff. evaly/ (s”) does, with s” = o [b +— #(0;1)].
Thus, either both oracle phases fail or both oracle phases succeed, ensuring that they
remain synchronized. Now, we must show that ¥' E ¢ U ¢, which amounts to proving
that for any y € dom(¢):

¥'(y) € (¥ U e (y) (6.2)

For any y # ¢, ¥ (y) = ¢(y) and ¥’ (y) = ¢’(y). Thus, Eq. (6.2) is immediate from the fact
that:

¢ CoUep
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It remains to check the case y = ¢:

Y'(6)
= evaly (s)
C evalgy, (s) (By Proposition 9)
C evaly(s) U Uxevars(s’y Po(x) (By Proposition 10)
= evaly(s”) U ¢y(£) (By Assumption 1)
= §(0) U 9y (0)
= (Y Ueg)(¢)

Which is what we needed. Then, the procedure analyzes the output condition ¢y in, resp.,
¥ and ¢’. As before, we now that both abstract evaluation b-evaly (¢ ) and b-evaly(cs)
are synchronized using Proposition 8, which concludes the analysis of the (D.T).

Finally, step (E) applies MEMOIZE.STORE to add a memoization hints, which only
depends on out.

o The destruction phase. The destruction phase peels-off a top-level construct of out
and applies a deconstruction rule (see Figure 6.6). To peel-off a top-level construct, we
put the term in weak-head normal form using the CONV rule on out. This only depends
on & and out.” We conclude the analysis of this phase by observing that none of the
deconstruction rules use the pre-condition or inputs, nor modifies the post-condition or
output memoization hints. All rules are straightforward, but for the FA.MATCH rule,
which obtains the final post-condition by re-composing the post-conditions of all match
cases.
More precisely, consider an FA.MATCH instance:

@+ in > match ¢ with (¢; X; — u;)i ~ Yo, (6.3)

We simplified the instance by removing the guard (--- | f) around the match. Further,
we omitted most components of the query judgement to focus on the the pre- and post-
conditions, which are the interesting part. In premise, we know that for any i, the procedure
synthesize, () concluded and produced the completed query judgement:

Xn@Fin,Xi> (u; | t =c; X;) w y; (6.4)
and we know that:
‘/’out = |_|i(V)_C)i- ‘/’i r (t =C )_C)l)) (65)

Consider ¢’ C @lUp,. We must show that running synthesize, () starting from the left-hand
side of Eq. (6.3) where we replaced ¢ by ¢’ verify the three following points:

o (i) It succeeds, and produces a completed query judgement of the form:

@' Fin>match £ with (¢; X; > u;); ~> ¥ . (6.6)

"Our implementation uses more complex reduction rules that may exploits the assumptions @. This
does not pose any issues here, since we may depend on 0.
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o (ii) The novel post-condition ¥, satisfies:
‘/’:)ut C libout U eg-
o (iii) The memoization hints of the query judgement in Eq. (6.3) and Eq. (6.6) are
identical.
First, by applying the induction hypothesis to Eq. (6.4) for every i, we get that:
X' Fin X > (i | AE=c; %) »o @) (6.7)
where ¥, Cy; U g, (6.8)

Thus, synthesis of the match term succeeds (that is, point (i) holds), and produces a
post-condition:

Your = LI (VX ;11 (¢ = ¢; K1) (6.9)
By Eq. (6.8), we know that ¢/ C ¢, L ¢, and thus (using the properties of Proposition 5):
VX i (8= c; X;) T VX (Y, W) M (2= ¢ Xi))

Further:

Vi ((Y; U pg) M (£ = c; X7))

(Y; Uey) M (Xt =c¢; X;) (Proposition 6.(A))
(Qﬁi 1 (32,'. t=c .f,))

L (QDO M (3)_6)1 t=c¢ )_C)l))

C VX.(y,n(t=c¢ X)) (Proposition 6.(A))
L ((po M (3)_5,‘. t=c; )_C),))

C
C

Consequently, using the definition of ¥{ , in Eq. (6.9) and taking the join of the previous
symbolic inclusion over all i, we have that:

lllgut
V)—C}'. (l/ll M (t =cC; )?l))

- |T| (u (oM (3Kt =c; ’?")))

C Your U U(‘Po M3t =c; X)) (Using Eq. (6.5))
C You U (@01 (\/ ;. t = ¢; X)) (Prop. 6.(B))
C Yol @ (Since (c¢;); are constructors)

Which concludes the proof of item (ii).

For point (iii), we observe that the induction hypothesis guarantees that the memoiza-
tion hints in Eq. (6.4) and Eq. (6.7) are identical. Since the final memoization hints of
Eq. (6.3) and Eq. (6.6) are obtained by recomposing the memoization hints all all premises,
we know that they are left unchanged.

This concludes the proof of (iii), and the proof of the FA.MATCH case.

o The unreachability phase. The unreachability phase uses the UNREACH rule which leaves
the pre-condition unchanged and directly outputs it. This satisfies our invariant. O
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6.4. Inductive simulator synthesis

We now prove Theorem 4:

Proof of Theorem 4. Since the execution of synthesize[*“(+) succeeded, we know, looking
at the second and third pass as described in Figure 6.10, that:

synthesize, (¢g F ifrec, ilmemo > (1 X | x < ¢))

6.10

=(p M (x<t),wx) ( )
po UL (x)

synthesize,| F iftrec, ifmemo | = (@g; Co; ¢’ w x) (6.11)

>(ux|x<t)

where both calls to synthesize, () use the same environment (&, x : 7), initial hypotheses
0, and initial constraints C. Further, we recall that:

ingec = (in, Ay.(u y |y <x)) (6.12)
iNmemo = Ay.(w y | y < x) (6.13)
L.(y)=Vx.o M(xyAy<t). (6.14)

Using Eq. (6.11) and by the soundness of the synthesize, () procedure, we know that:

(E,x:7);0;C; 90U T (x) F
iRrec, iMmemo > (U X | x < £) ~> (Op; Cos ¥'; w x)

or equivalently, moving (w x) from the right of ~» to its left, and weakening (w x) into
(w x | x < ¢t) (which we can do, since ¢ € in.std):

(E,x:7);0;C 09 U L(x)
iRec, iRmemo > (u X, WX | x < t) el (®0§COZ¢’; 6)

Then, using the definitions of inrec and inmemo in Eq. (6.12) and Eq. (6.13), and re-arranging
the values on the left of >, we have:

(8,x:7);0;C; 9o U Lc(x) F
in,dy.(uywyly<x)>(ux,wx|x<t) (6.15)
~ (@g; Co; ¥ €)
We are now ready to apply the INDUCTION rule of Figure 6.9, where:
o we are inductively computing A(x : 7). (u x,w x);
« forall x the memory invariant before time-point x is ¢y LI Z<(x);

o forall x the memory invariant after time-point x is Z7<(x) (and not ¢y U Z<(x)).

It remains to check all premises of the INDUCTION rule. Most premises clearly hold by
hypothesis, but for the fact that:

A) g entails the initial memory invariant, i.e.:
&0 Fa ¢o T o U L<(x0)

where xg is the minimal element w.r.t. <.

135



Chapter 6. Automation

B) The post-condition of Eq. (6.15) is a post-fixpoint:

(8,x:7);0 Fay’ E I<(x);

C) The memory invariant after pred x entails the memory invariant before x:

(E,x:7);0 Fa I<(pred x) C @g U T(x)

Condition A) trivially follows from the monotonicity property of L w.r.t. C of Proposi-
tion 5.

For condition B), we apply Lemma 22 on the basic synthesis execution of Eq. (6.10),
using Z.(x) as inductive memory invariant. This tells us that the post-condition ¥’ of the
basic synthesis execution of Eq. (6.11) is such that

(E,x: 1)@ Ep ¢/ C (o 1 (x < 1) UL (x). (6.16)

Let us show that:
(E,x:7);0 Fa (o1 M (x <)) CTc(x) (6.17)
(E,x:7);0 Fa I<(x) C 7<(x) (6.18)

Recall that the definition of 7 is in Eq. (6.14). Property Eq. (6.17) can be established by
instantiating the quantification in 7 with x, and noting that

((pMx<t) EpMNx<xAx<t)).

Property Eq. (6.18) follows by unfolding T into its semantics and then doing some
straightforward reasoning on the ordering <.
Continuing from Eq. (6.17) and Eq. (6.18), and using Proposition 5, we get that:

(E.x:7);0 Fa (oM (x <)) UT(x) EL<(x)

which, together with Eq. (6.16) and the transitivity of T, proves condition B).
For condition C), we must show that:

(E,x: 7);© Fa Te(pred x) oy U To(x)
which we obtain by showing the stronger property:
(8,x:7);0 Fa T<(pred x) T T (x).

which is straightforward from the definition of 7,.(x) in Eq. (6.14), instantiating the
quantifier in 7 with x on both side. O
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To conclude this thesis, we implemented our synthesis into SQUIRREL, making it
available as a tactic, crypto, in SQUIRREL proofs. We start this chapter by giving a quick
overview of SQUIRREL syntax and proofs in Section 7.1, and we present how the synthesis
is made available to users in Section 7.2. We present these case studies in Section 7.3,
highlighting what was achieved and why they validate our approach. Finally, we show
that our method can handle more complex protocols, by tackling the FOO protocol — the
largest case study in SQUIRREL to date. This case study relies on new hardness assumption
and integrate crypto in a large proof. The proofs’ high-level description is presented in
Section 7.4.

7.1 Preliminary on Squirrel syntax

In this section, we present elements of the SQUIRREL syntax and usage prior of the thesis.
These elements are necessary to understand the rest of the chapter.

Types and operators. In SQUIRREL, we can declare new types and abstract library
functions, called operators. We can declare a new type ty with labels labels with the
following syntax: type ty| labels]. Among the SQUIRREL labels, we will make uses of the
followings ones:
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« serializable, which says that the type is encodable in bitstrings,

o large, which ensures that the probability of collision of two sampling on this type is
negligible.

An operator f of type 7 is declared with the syntax op f :7. For example, the types and
operators needed for the CCA2 game can be declared as follows:

type seed| serializable, large ]. (* seed *)

type sk_enc| serializable, large |.  (* secret key *)
type pk_enc|[ serializable ]. (* public key *)
type ctxt[ serializable |. (* cyphertext x)

(* Encryption's scheme primitives: public key, encryption and decryption. *)
op pk_enc : sk_enc — pk_enc.

op encr : message — pk_enc — seed — ctxt.

op decr : ctxt — sk_enc — message.

Systems. In SQUIRREL, the mutually recursive functions frame, input and output have
built-in definitions. Their mutual definition is implemented directly into SQUIRREL, when
it is not protocol-depend, and leaves to the users the definition of timestamp symbols and
output. This is done through systems, a system representing a protocol. Bi-systems — or
bi-protocols — are made available through bi-terms, with the specific constructor diff, the
exact counterpart of our theoretical #(_; ).

To continue on illustrating the implementation, we provide below the mixnet system
declaration done in SQUIRREL, as presented in Chapter 6 along with name declaration.

(* Encryption key and encryption seed names.x)
name k:sk_enc.
name r:seed.

(* The mixnet system. *)
system MixNet =
PUB : out(c, (pub k)) |

(* the voter "V sends its encrypted ballot *)
V: (in(c,x);
out(c, enc diff(x,dummy) r (pub k))) |

(* collect and decrypts ballot into “bb" *)
M: (1; in(c,y);
bb(i) :=
ifV<Mi&&
y = enc diff(input@V,dummy) r (pub k)
then input@V
else dec y k) |

(* publish “bb" once collection (i.e. sub—processes *M") are done x)
P: (let BB =1 1= bbiin out(c, shuffle BB)).
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Proofs. Finally, we can declare axioms in SQUIRREL with the following syntax:

axiom Name Osystem:S vars : f

where

o Name is the name of the axiom,

Osystem:S indicates the system (or systems) in which the axiom holds, S can be a
system name or any when the axioms hold in any system,

e vars is a list of variable, and

o fis a formula.

Lemmas and global lemmas (lemmas on, respectively, local or global formulae) are also
declared using the same syntax with the commands lemma and global lemma.

For example, we present below the usual axiom on encryption and the protocol
indistinguishability global lemma for the MixNet system.

(* Axiom stating that the decryption of the encryption of m with the correct key retrieves m )
axiom decr_encr @system:any m r sk : decr (encr m (pk_enc sk) r) sk = m.

(* The following lemma proves that for any timestamp 't",
if the voter has sent its message "V < t°, the two protocols
decribed by “MixNet" system are indistinguishable.

The additional hypothesis [ len (input@V) = len dummy|" ensures the bi—system

differs on encryptions of same—length messages,

to respect the length condition of the CCA2 hardness assumption.

*)

global lemma _ Osystem:MixNet t : adv(t) = [V < t] = [len (input@V) = len dummy ]| =
equiv(frameQ@t).

To start the proof of lemmas and global lemma, we use the command Proof.. Then
follows a sequence of tactics, and the proof ends with either Qed. when the proof is done,
or Abort. to abort the proof.

7.2 Implementation

We have implemented our simulator synthesis procedure in SQUIRREL [66]. This imple-
mentation is mainly located in one file, src/core/crypto.ml, that implements the proof
search procedure. It significantly relies on the existing matching procedure and automatic
reasoning capabilities in SQUIRREL. This extension allows users to specify arbitrary games,
and exploit the synthesis procedure through a tactic called crypto, which takes as input
the game to be used and some (optional) initial constraints. Upon success, the tactic
reduces the equivalence to be proved to proof obligations corresponding to the subgoals
generated by the synthesis procedure and the formulae establishing the validity of the
generated constraint system.
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Scope. Our goal was for crypto to reach the expressivity level of SQUIRREL’s legacy
cryptographic tactics, while being able to tackle new cryptographic games. Crucially,
legacy cryptographic tactics, as well as crypto, are not expected to apply in all scenarios: a
typical SQUIRREL proof consists in modifying the proof-goal using its indistinguishability
logic [24] to pave the way for the application of a cryptographic game. Furthermore,
since SQUIRREL is an interactive proof assistant, we aim for crypto to have a low running
time (i.e. a few seconds). This explains the design choices of our procedure: the up-front
processing of induction, the ad-hoc processing for invariant inference and the absence of
backtracking.

In this section, we go back to the motivating example of Section 6.1, to presents its
formalization in SQUIRREL and illustrate how our framework is embedded in SQUIRREL.
The corresponding file can be found in [65] in motivating. sp.

7.2.1 Inputs of the crypto tactic

The crypto tactic is expected to be used in a proof environment — between a command
Proof and Qed or Abort commands. It takes several inputs: the game of the hardness
assumption, and optional initial constraint system and flags. We detail them in this
section.

Games. The crypto tactic comes with a new syntax to declare arbitrary games. This
syntax follows the one of Chapter 3. A game declaration is of the form

game Name = { ... }

The user can declare global samplings, variables and oracles. This is respectively done
with the following declarations:

rnd[name] : [type]
var[var| = [term]and
oracle[oracle] = {...}.

Below, we give a SQUIRREL syntax for the CCA2 game.

game CCA2 = {
rnd key : sk_enc;
var log = empty_set;

oracle pk = { return pk_enc key}

oracle encrypt (m0,m1 : message) = {
rnd seed: seed;
var c0 = encr m0 (pk_enc key) seed;
var cl = encr m1 (pk_enc key) seed;
log := add diff(c0,cl) log ;
return if (len m0) = (len m1) then encr diff(m0,m1) (pk_enc key) seed

}

oracle decrypt (c : ctxt) = { return if not (mem c log) then decr c key }

}
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Initial constraint system. An initial constraint system can be given to the crypto
tactic for the simulator’ synthesis procedure. This is done by giving elements of the form
(rnd : n) where rnd is a global random value in the game, and n a name. When the name
is indexed, the implementation checks that they are bideducible without oracle calls nor
random samplings.

Flags. It is possible to give flags to the tactic, which are

o time_sensitive: this enables the first two passes of our simulator synthesis to synthesize
memoizing simulators and generate time-sensitive invariants. Without this flag, the
crypto tactic synthesize a simulator without memoization and with time-insensitive
invariants.

e no_subgoals_on_failure: this disables the unreachable phase in the basic procedure of
simulator synthesis.

Finally, the proof of the MixNet example is:

global lemma secure_mixnet @system:MixNet t : adv(t) = [V < t] = [len (input@V) = len dummy |
= equiv(frameQt).
Proof.
intro HA Hlen.
crypto
~time_ sensitive (* use the improved synthesis procedure x)
CCA2 (* use the *CCA2" game x)
(key:k); (* map name “k* to ‘key' in *CCA2" %)
auto.

Qed.

7.2.2 Outputs of the crypto tactic

The SQUIRREL proof above proves the equivalence of the left and right components of
the process MixNet directly by reduction to CCA2. It generates 8 subgoals that are
automatically proved by auto. It also prints the final constraint system, the final abstract
memory and all the generated subgoals.

First, let us give a sketch of what the synthesis procedure outputs on the proof on our
mixnet example. This can be retrieved by a verbose mode of the tactic crypto. There is
one encryption enc diff(input@V, dummy) r (pub k) that appears in:

e in output@V, guarded by condition V < t.
e in output@M(i) for any index i guarded by the condition M(i) < t && V < M(i).
That means the synthesis does the following oracle calls:

e one for output@V if the mixnet has not run and used the oracle, that is
Vi, not M(i) < pred V || not (M(i) < t && V < M(i)).

« one for output@M(i0) if i0 is the first index such that: the mixnet does the call and
the voter hasn’t run before. That is not (V < pred (M(i0))) || not (V < t) and
Vi, not (M(i) < pred (M(i0))) || not (M(i) < t && V < M(i))

This is reflected in the final memory and then final constraint systems.
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Final constraint system. The final constraint system contains the initial constraint
given as input and the two associating name r to a local sampling of the game.

(* Initial constraint given to cryptox)

{ k, Gkey }

(* Contraint generated for name 'r* when synthesizing output@M(i0)x)

{r,L|Vi0:((V (i:index), not (M(i) < pred (M(i0))) || not (V < M(i)) || not (M(i) < t))
&& (not (V < pred (M(i0))) || not (V < t)))
&& V < M(i0)
&& M(i0) <t }

(* Contraint generated for name “r* when synthesizing output@V x)
{r.,L| (VY (irindex), not (M(i) < pred V) || not (V ( M(i)) || not (M(i) <t)) && V <t}

Final memory. Similarly, the log is updated during these two oracles calls, which leads
to the following abstract memory.

log — [ (* Logged during the synthesis of output@V x)
{ enc diff(input@V, dummy) r (pub k) | V 70 :
(V (i:index), not (M(i) < pred V) || not (V < M(i)) || not (M(i) < t))
&& V <19 && 19 < t },

(* Logged during the synthesis of output@M(i0) *)

{ enc diff(input@V, dummy) r (pub k) | V i0,1p :
((¥ (i:index), not (M(i) < pred (M(i0))) || not (V ( M(i)) || not (M(i) < t))
&& (not (V < pred (M(i0))) || not (V < t)))
&& V < M(i0) && M(i0) < 79 && 19 <t } |

Validity subgoals. Two kinds of subgoals are generated by our tactic. First, we have
formulae justifying the validity of the final constraints. We give here an example of the
freshness local formula that originates from the two constraints that associate r to a local
sampling.

(* The condition of the constraint for output@M(i)...x)
V¥ (i:index), ((V (i0:index), not (M(i0) < pred (M(i))) || not (V < M(i0)) || not (M(i0) < t))
&& (not (V < pred (M(i))) || not (V < t))
&& V < M(i)
&& M(i) <t
(*...and ...x)
&&
(*..the condition of the constraint for output@V...*)
(¥ (i:index), not (M(i) < pred V) || not (V < M(i)) || not (M(i) <t)) && V <t
(* ...do not both holds at the same time. *)
= false

Oracles subgoals. Finally, note that a call to the oracle encrypt with messages mqy and
mj requires that my and m; are of same length. This is left to the user. We present here
the formula returned to the user that originates for the oracle call when synthesizing
output@V.
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l ‘ Protocol Hypotheses Synthesis Property ‘ ‘
Hash Lock PRF Insensitive Strong secrecy
Basic Hash EUF-MAC and PRF  Insensitive Unlinkability
Global CPA CPA Insensitive Basic indistinguishability
Private Authentication CPA} Insensitive Anonymity
Partial NSL CCA2* Insensitive CCA rewriting
NSL CCA2* Sensitive Bob’key secrecy - CCA step

Figure 7.1: The case studies. For each protocol, we give the cryptographic games
(hypotheses) used in the proof and the kind of security property proved. Cryptographic
assumptions that were not available in the tool before this thesis are marked by an
asterisk #. The Synthesis column precises whether the synthesis needed for the proof could
rely on time-insensitive invariants or needed the memoizing and time sensitive invariants
presented in Chapter 6.

(¥ (izindex), not (M(i) < pred V) || not (V < M(i)) || not (M(i) < t)) && V <t
= len (input@V) = len dummy

7.3 Case studies

We validate our approach first on several case studies, which we briefly describe below.
These case studies are available on the main SQUIRREL repository [66] (in sub-directory
examples/crypto/), except for the NSL case study, which can be found in [65] (in
sub-directory ns1l/Bob-secrecy/).

In these case studies, we were able to reprove SQUIRREL examples without the legacy
tactics, as well as integrate new hardness assumption, which provided promising results.

These case studies, except for NSL, were also provided as artifact material in [59] in a
non-maintained and self-contained public repository [67]. It provided the source code
of SQUIRREL at this date, the case studies (in sub-directory case-studies-ccs/),
as well as HTML files that allow to replay the runs of SQUIRREL on each example
without installing the tool.

In Figure 7.1, we provide a table summarizing the cases studies. We give some additional
details below.

Hash Lock. The file hash-lock.sp presents the SQUIRREL proof of our example in
Chapters 3 to 5, i.e. strong secrecy for the Hash Lock protocol, derived from the PRF
game.

Basic Hash. We then illustrate how our crypto tactic can eventually replace existing
tactics, on the example of the Basic Hash protocol, which was already proved unlinkable
using the EUF and PRF legacy tactics. We adapt the same arguments using crypto
with both EUF and PRF games in the file basic-hash.sp. This showed that our bi-

143



Chapter 7. Implementation and Case Studies

deduction verification was already powerful enough for real examples without memoizing
and time-sensitive invariants.

Global CPA. Legacy cryptographic tactics in SQUIRREL can only handle #(_; ) in
indistinguishabilities, and not in the protocols. Interestingly, crypto does not have this
limitation: in global-cpa.sp, we prove the equivalence between two protocols outputting
different values (of the same length) using crypto on the CPA game; such equivalences are
often useful when reasoning about protocols.

Private authentication. We show, obviously, that our approach is not limited to
cryptographic assumptions already supported by SQUIRREL. We prove anonymity of
the Private Authentication protocol [68] in the file private-authentication.sp using
a previously unsupported cryptographic assumption, CPAg, which roughly states the
indistinguishability between an encrypted message and a fresh random sampling.

NSL. In the file nsl.sp, we prove a key step of a partial version of the NSL protocol [3],
which relies on the CCAy game that was previously unsupported in SQUIRREL. This
version has no additional actions to capture key secrecy: it proves the equivalence of the
NSL protocol with its ideal version where encryptions are replaced by dummy ones, as
presented in Chapter 1. This proof does not use the time-sensitive aspect of the simulator
synthesis: we manage the induction outside the call to crypto, to make some deduction
step by hand. This technic would not work with the protocol expressing the key secrecy.
Hence, this last case study provides the proof of the CCA2 idealization game-hop for the
protocol modelling Bob’s key secrecy property (This is the protocol shown in Chapter 1).
It relies on the memoizing simulators and time-sensitive invariants aspects to conclude.

7.4 'The FOO protocol

We verified the security of the FOO e-voting protocol [44]. We chose FOO because it relies
on cryptographic assumptions and primitives (CCA2, blind signatures, commitments) that
were never considered in SQUIRREL before this work; and because a CCSA pen-and-paper
proof of security for FOO already existed [27], giving us a head start.

As in [27], we focus on proving that FOO provides vote privacy, following Benaloh’s vote
swapping definition [69]. While the high-level structure of our proof follows that of [27],
our security analysis is significantly more complicated, for two reasons. First and foremost,
we mechanized our proof in Squirrel, which yields a development of approximately 10 kLoC
(in contrast, [27] only provides a two-page proof sketch). Second, we consider an arbitrary
number of dishonest voters, where [27] only has one — thus, their protocol only has a
fixed number of agents. Having an unbounded number of agents significantly complicates
the security analysis, as it forces us to rely on inductive reasoning.

We describe next FOQO’s cryptographic primitives, the high-level structure of the
protocol, the modelling of vote privacy, and finally our Squirrel proof.

The SQUIRREL proof can be found in [65].
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7.4.1 Cryptographic primitives and assumptions

To achieve its security goals, FOO uses mixnets, encryptions, blind signatures, and
commitments. In this section, we present each primitive and the associated cryptographic
game. We give special attention to the blind signature scheme, as the game we used in the
proof is not the usual game associated with it. Our game is a specifically designed version,
and using it requires pen and paper proof reductions to the usual one. The SQUIRREL
games can all be found in the file foo/Games. sp.

Some primitives will share seeds type, whose declaration is recalled below.

type seed| serializable,large |.

Asymmetric encryptions

Asymmetric encryption and its hardness assumption were presented and used several times
in this thesis. We point to Section 7.2 for their SQUIRREL formalization.

Mixnets

A miznet [63] is a (sub-)protocol which allows a collection of agents to send messages while
hiding the relations between messages and senders. Typically, the agent’s messages are
encrypted with the mixnet public key. Once all messages have been received, the mixnet
shuffles them at random, and publishes their decryptions.

In practice, to protect the users’ privacy against the mixnet itself, mixnets are
composed of several independent servers, where each server does one round of
shuffling and decryptions, typically augmented with zero-knowledge proofs of correct
shuffling. Here we assume our mixnets to be honest agents.

We use the abstract modelling of shuffle presented in Chapter 6. For each mixnet,
we assume the existence of a single (fictitious) public key whose corresponding secret
key is held by an honest agent representing the mixnet as a whole. Once the mixnet is
done receiving messages, it decrypts them and outputs their shuffling. Following [27], we
leave the shuffling function unspecified, and only require that shuffling is invariant by
permutation of its inputs through the following axiom:

axiom shuffle @system:any f p : bijective p — shuffle f = shuffle(di. f (p 1))

Commitment

Cryptographic commitments [70] allow a user to commit to a value v while hiding v until
it publishes the key k. needed to open the commit. A commitment must be binding (a
commit of v cannot be opened into a value v/ # v) and hiding (as long as k. remains secret,
no adversary can learn anything about v from its commit). To prove FOO’s privacy, we
only need the commitment hiding.

Also, during the proof we exploited a second assumption on commitments: that they
hide not only committed values but also keys. It trivially follows from the commitment
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hiding property, as an adversary that can compute the commitment key can open commit
and win against the commitment hiding.

For these hardness assumptions, we extended our games to parameterized games. A
parameter is a value provided by the adversary at the beginning of the game to be set
in the game’s memory. It is identified by the flag #init in the syntax. Note that this is
equivalent to define an initialization oracle and restricting the game to ensure this oracle
is called first. In SQUIRREL it translates into an adversarial term that has to be provided
when calling crypto. Here is the formalization in SQUIRREL:

type k_comm| serializable,large |. (* Commitement key *)

(* Commitement scheme primitives: commit, and open.x)
op comm : message — k_comm — message.
op copen : message — k_comm — message.

(* Axiom stating that a commit opened with its key yields the commited value.*)
axiom copen_comm Osystem:any x k : copen (comm x k) k = x.

(* Commitment hiding game.x)
game CommitmentHiding = {
oracle challenge (m0,m1 : message) = {
rnd key : k_comm;
return comm diff(m0,m1) key;
}
}.

(¥ Commitment key hiding game, consequence of the above game.x)
game CommitmentKeyHiding = {
rnd key : k_comm;

(* game parameter declaration x)
let commited_message = #init;

oracle commit = {
return comm commited__message key;

oracle challenge (guess : k_comm) = {
return diff(key = guess,false);

}
).

Notice that in the commitment hiding game, the key is a local sampling. We use this
formalization as it simplified the games (there is no need for logs). This reduces to the
classical game which has a global key. On the contrary, note that the key in the key hiding
game is global. However, the oracle of the game can morally be called only once on a
single input: the value with which the game is initialized.

Blind signature

Blind signatures [71] allow a user to ask for the signature of a message m to a signer V
without revealing m to V. In FOO, blind signatures are used to authenticate the voters’
ballots without revealing its content to the authority who signs the ballots. This allows to
consider a dishonest authority when analysing vote privacy.
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type pk_sign| serializable ]. (* public verification key *)

type sk_sign| serializable,large ]. (* secret signing key *)

type token_bsign| serializable,large |. (* blinding token, sampled by the voters x)
type blinded| serializable |. (* blinded message, to be signed x)

type bsigned| serializable |. (* blinded signature x)

type signed| serializable]. (* unblinded signature *)

(* pk « bskg(sk) generates the public key ‘pk" associated to the secret key ‘sk' x)
op bskg : sk_sign — pk_sign.

(* b « blind(m,pk,t) computes the blinding "b" of a message "'m" x)
op blind : message — pk_sign — token_bsign — blinded.

(* bs « bskg(b,sk,r) computes the blinded signature of the blinded message ‘b *)
op bsign  : blinded — sk_sign — seed — bsigned.

(* acc « baccept(m,pk,t,bs) checks if ‘bs" is a blinded signature for message ‘'m" x)
op baccept : message — pk_sign — token_bsign — bsigned — bool.

(* ub « unblind(m,pk,t,bs) unblinds the blinded signature *bs" of message "m" using the token "t )
op unblind : message — pk_sign — token_bsign — bsigned — signed.

(* ver « bverifi(m,ub,pk) checks if ‘ub" is an unblinded signature of *m" x)
op bverif : message — signed — pk_sign — bool.

Figure 7.2: Abstract types and operators modeling blind signatures.

In our formalization, we use a two-round blind signature, modelled by the abstract
types and operators in Figure 7.2. Concretely, let sk be a secret key and pk = bskg(sk)
the associated public key. To obtain the signature of m, the user will generate a fresh
blinding token t, and use it to compute the blinding b « blind(m, pk, t) of m and, crucially,
b should not reveal anything about the message m. Then, the signer can blindly sign b by
computing bs « bsign(b, sk, r) (where r is the signature randomness). Then, the user can
check that bs is a valid blind signature of m using baccept(m, pk, t, bs), and unblind bs to
retrieve the unblinded signature ub through unblind(m, pk, t, bs) — note that the random
blinding token t is needed here, which the signer does not know. Finally, any third party
can check that ub is a valid signature for m using bverif (m, ub, pk).

The proof relies on the Selective Failure Blindness [72], hardness assumption, which
state that the blinding hides the blinded.

Furthermore, we design a game adapted for our proof of FOO: the Adaptative Selective
Failure Blindness; and prove it reduces to the Selective Failure Blindness assumption. Below,
we present the Selective Failure Blindness and Adaptative Selective Failure Blindness
notions, prove the reduction from the latter to the former, and give the SQUIRREL
formalization of the Adaptative Selective Failure Blindness.

The usual hardness assumption for blind signature blinding is the Blindness [71]
property. However, it was not applicable in our situation.

The Selective Failure Blindness [72], is a stronger notion than Blindness, and, any
blind signature scheme can be efficiently modified into a Selective Failure Blind
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signature scheme [73]. Thus, relying on this stronger assumption is at little cost, and
we assume our blind scheme respects the Selective Failure Blindness assumption.

Selective Failure Blindness. Formally, the Selective Failure Blindness [72] game is
captured by the SFBlind experiment in Figure 7.3. This is a three phase experiment. In
the first phase (P1), the adversary chooses a pair of messages (mg, m1) to be signed, as
well as the public signing key (which may thus be dishonestly generated). In the second
phase (P2), the adversary is provided with the blinding of mg and my, in an order that
depends on b: if b = 0, it gets the blinding of (mg, m1); and of (m1,mg) if b = 1. More
concisely, it gets (ma, mp) where A = b and B =1 - b. Then, it produces two candidates
blind signatures bss and bsg of, resp., mys and mp. Finally, in the last phase (P3), the
experiment computes the unblinding ubs and ubg of the blind signatures bsy and bsg.
Crucially, the experiment masks both signatures if any one of them was not correctly signed
by the adversary. Then, it forwards them to the adversary in an order that is independent
of b, i.e. it sends ubg and ub; — if the adversary got uby, ubp instead, it could trivially
break the game by checking, e.g., whether uby is a valid signature for mg.! Furthermore,
the adversary is provided with the two bits accy, accg informing it of which blinding were
rejected by the user. If accy, accp are both true, this information is already available to
the adversary from the fact that (ubs,ubg) # (L, 1). But if that is not the case, the
adversary may know which blinded signature was rejected (see [72,73] for details).

Finally, the adversary wins if its guess b’ is correct, i.e. b = b’. We say that a blind
signature scheme satisfies the Selective Failure Blindness assumption if:

1
Advsgina(n) < [Pr(SFBIind”,) - 5
is negligible in 5 for all polynomial-time adversary A.

Adaptive Selective Failure Blindness. The Selective Failure Blindness game provides
the bits accq and accg non-adaptively to the adversary. This may be limiting in practice.
Indeed, consider the following scenario?:

e The adversary first interacts with some user A to obtain the blinded message
blind(my, pk,t4). At that point, it must send back the candidate blinded signature
bss to A.

o Then, the adversary does the same for B: it obtains blind(mp, pk, ), and sends back
the candidate blinded signature bsg.

« Then the adversary eventually obtains the (guarded) unblinding of bsy and bs;.

Further, assume that both A and B abort their execution if they obtain invalid blind
signature — which is a reasonable behaviour for them. Then, we cannot directly apply

ISimilarly, if both signatures were not masked when any of them was incorrect, the adversary could
trivially win by correctly signing the blinding of m4 and incorrectly signing the blinding of mp. Then, if
ubg is valid, it means that b = 0. Otherwise, b = 1.

2This is the pattern we encountered with FOQ’s proof.
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experiment SFBIindZ[ ={

b & bool;

(* P1: the adversary chooses the public key and messages to sign *)
(pk, mg,m1) «— A(17);

(* P2: send blinded messages to be signed by the adversary *)
to & token; 1 & token;

A=b; B=1-b;

(bsa, bsg) « A(blind(ma, pk,a), blind(mpg, pk, t5));

(* P3: adversary guesses the side *)

acc; « baccept(my, pk, t;, bs;); (Vi € {0,1})

ub; < unblind(m;, pk, t;, bs;); (Vi € {0,1})

(* mask both unblinded signatures if any of them failed *)

if =(accy A accy) then {uby « L;ub; « 1;} else skip

(* unblinded signatures provided in an order independent of b *)
(* acceptance bits provided in the order (A, B) *)

b’ — A(ubg, uby, accy, accp);

return(b = b’)

The adversary A is a stateful polynomial-time probabilistic program. All procedures and
random samplings are implicitly parametrized by the security parameter . The start of
each phase is indicated by PI1,P2, or P3 in comment.

Figure 7.3: The Selective Failure Blindness cryptographic games.

the Selective Failure Blindness because we cannot simulate A and B’s behaviour without
knowing accy4 and accg during phase (P2) instead of at the start of phase P3.

To solve this issue, we propose the Adaptive Selective Failure Blindness game in
Figure 7.4. In this game, the adversary may obtain the acceptance bits accy and accp
as soon as they are available during phase P2, instead of at the beginning of phase P3.
Concretely, in phase P2, the adversary can set the blind signatures bsy and bsp in the
order of its choosing, using the setBlindSig oracle. Then, once bsy has been set, the
adversary may obtain accy by calling get Acc(X).

We say that a blind signature scheme satisfies the Adaptive Selective Failure Blindness
assumption if:

1
Advasrging () < [Pr(ASFBIind’y) -

is negligible in 5, for all polynomial-time adversary A.

Proposition 11. Any Selective Failure blind signature is an Adaptive Selective Failure
scheme. More precisely:

AdvasFBiind (17) < 4 X Advsegiing(17)
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experiment ASFBIindZ{ = {

.

b & bool;

(* P1: the adversary chooses the public key and messages to sign *)
(pk’ mo, ml) — ﬂ(ln)7

(* P2: send blinded messages to be signed by the adversary *)
to & token; 11 & token;

A=b; B=1-b;

bsg « L;bsy « L;

() « AsetBlindSiz.getAce (blind(my, pk, 14), blind(ms, pk, 15));

(* P3: adversary guesses the side *)

acc; < baccept(m;, pk, t;, bs;); (Vi € {0,1})

ub; < unblind(m;, pk, t;, bs;); (Vi € {0,1})

(* mask both unblinded signatures if any of them failed *)

if =(accy A accy) then {ubg « L;uby « L;} else skip

(* unblinded signatures provided in an order independent of b *)
b" — A(ubg, uby);

return(b = b’)

where

oracle setBlindSig(X, y) := { if (bsy = L) then bsy <« y else skip }

oracle getAcc(X) := {
if (bsxy # 1) then return baccept(my, pk,tx, bsx) else skip

}

The adversary A is a stateful polynomial-time probabilistic program. All procedures and
random samplings are implicitly parametrized by the security parameter n. The start of

each phase is indicated by PI1,P2, or P3 in comment.
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Proof. This is a standard guessing step. Take A an adversary against the ASFBlind
experiment. W.l.o.g., we assume that A calls each oracles setBlindSig and getAcc
exactly once for X = A and for X = B. We build 8 against SFBIlind:

e Phase PI: 8 simulates A without any modification.

o Phase P2: B simulates A. When A calls setBlindSig(X, bsx), 8 logs the pair
(X, bsx). At the end of this phase, B returns the two logged values bsy and bsg.
When A calls get Acc, the adversary B answers with a bit sampled uniformly at
random. Further, it stores this bit for the next phase.

o Phase P3: 8B checks whether it correctly guessed the values of accy and accp. If
that is not the case, it aborts its execution and return a bit »” sampled uniformly at
random. Otherwise, it simulates (A without any modification and returns A’s result.

Let Guess be the event indicating that B correctly guessed the values of accy and accp.
Then,

Pr(ASFBIind%)
= Pr(ASFBIind% A Guess) + Pr(ASFBIindUB A =Guess)
= Pr(ASFBIind% A Guess) + Pr(b” = b A =Guess)

1
Pr(ASFBIind}, A Guess) + 3 Z
= Pr(SFBlind”; A Guess) + g
1
=1 Pr(SFBIindnﬂ) + g

Thus,

Pr(ASFBIlind%,) - % = — - | Pr(SFBIind",) - %

1
4

which concludes this proof. O

Encoding in Squirrel. In Figures 7.3 and 7.4, we gave the blindness games using a
standard style for a cryptographer. But, in this style, these games do not fall into the
class of cryptographic assumptions supported by the procedure we designed in Chapter 6.
Fortunately, the games can be rewritten to fall into this class, using an alternative
non-trivial encoding.

The experiment we define for Adaptative Selective Failure Blindness is phased. Phases
are not natively supported in our games, but we use logs to encode them. Its SQUIRREL
formalization can be found in Figure 7.5. The game defines two logs: logA and logB, which
are supposed to register the signatures for A’s blinding and B’s blinding. Concretely, a
non-empty log means that the corresponding acc oracle has been called on the value the log
contains. With that idea we can prevent accA and accB oracles from being called several
times, and ensure the unblind oracle is called on the same signatures, after accA and accB
oracles.
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game AdaptativeSelectiveFailureBlindness = {
rnd tokenA : token_bsign;
rnd tokenB : token_bsign;

(* initialization parameters )
let m0 = #init;
let ml = #init;
let pk = #init;

var logA = empty_set;
var logB = empty_ set;

(* oracle blinding and acc for A *)
oracle blindingA = { return blind diff(m0,m1) pk tokenA;}

oracle accA sA = {
var logA' = logA;
logA := add sAm logA;
return if subseteq logA' (singleton sA) then baccept diff(m0,m1) pk tokenA sA

}

(* oracle blinding and acc for A *)
oracle blindingB = { return blind diff(m1,m0) pk tokenB;}

oracle accB sB = {
var logB' = logB;
var sBm = format sB;
return if subseteq logB' (singleton sB) then baccept diff(m1,m0) pk tokenA sB

}

(* unblind oracle x)

oracle unblind (sA,sB : bsigned) = {
var logA' = logA;
var logB' = logB;

var accA = baccept diff(m0,m1) pk tokenA sA;
var accB = baccept diff(m1,m0) pk tokenB sB;
var ub0 = unblind m0 pk diff(token0,token1) diff(sA,sB);
var ubl = unblind m1 pk diff(tokenl,token0) diff(sB,sA);

logA := add sA logA;
logB := add sB logB;

return

if subseteq logA' (singleton sA) && subseteq logB' (singleton sB) then
if accA && accB then (ub0, ubl)
¥

1.

Figure 7.5: Adaptative Selective Failure Blindness SQUIRREL formalization.
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8 |22: if ~votedAB bby then abort else skip 23: shuffle bb,
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Lines are labeled by integers (1, 2, ...) for quick referencing. Integer labels only roughly
indicate the ideal execution order of protocol operations: e.g., the adversary may trigger
the input 9 before the voter sent its blinded ballot to be signed (output 3).

(not modeled)

|
(corrupted) }

— — — — — — — —

Figure 7.6: The FOO e-voting protocol.

7.4.2 The FOO protocol security

FOO involves three parties: voters, who cast their ballots; the administrator, who issues
credentials to voters (without learning their votes); and the collector, who gathers, mixes,
and publishes ballots and results. In this section we present the modelling of FOO, how
we expressed the privacy property and a high-level description of the SQUIRREL proof.

Modelling FOO

The FOO e-voting protocol, described in Figure 7.6, has four phases. In the first two
phases, the voters publish the commit to their vote on a public bulletin board. In the last
two phases, the voters publish their commit token to the public bulletin board, which
allows to open the commits to the votes and to tally the election.

Phase 1. In phase 1, the voter computes the commitment ¢ to its vote (1) using the
commit token k.. Then, blind signatures are used to let the voting authority authenticate
the ballot anonymously: the voter blinds its commit (2), sends it to the voting authority
(3) which sends back the blinded signature (4) that the voter verifies (5,6) and unblinds (7)
unto the signature ub. Then, the voter publishes the ballot (¢, ub), comprising the commit
to its vote and the signature authenticating it, to the public bulletin board. Here, the
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voter’s anonymity is preserved by interposing a mixnet between the voter and the bulletin
board. Concretely, ballots are encrypted and sent to the mixnet (8,9), which decrypts and
collects them (10).

Phase 2. Once the first voting phase is over, we move to phase 2, where the mixnet
shuffles all ballots and sends them in bulk to the bulletin board (12) which publishes them
(13) — we assume that BB is a public read-only variable, which models the fact that
everybody shares the same view on the immutable bulletin board. Before sending the
ballots to the bulletin board, the mixnet checks that there are no duplicates ballots (11),
which is necessary for privacy (see [74]).

Phase 3. In phase 3, the voter aborts if its ballot is not on the public bulletin board
BB (14,15). Then, it retrieves the index i of its ballot on BB, and sends to the second
mixnet (17,18) the encryption of the pair (i, k.) of its ballot index and its commit token,
which is decrypted and collected by the mixnet (19).

Phase 4. Finally, in phase 4, the second mixnet publishes the shuffled commit tokens
(23). As in phase 2, it first checks that there are no duplicates (20). The additional checks
(21,22) are necessary to model the privacy property, and are discussed below.

Privacy modelling

Model. We let the adversary control the bulletin board signing authority, and the tally.
We consider two honest voters Votera and Voterg, and an arbitrary number of dishonest
voters — dishonest voters are not modelled explicitly, as they are adversary-controlled,
but implicitly, by letting the mixnets collect an arbitrary number of inputs. Following
Benaloh’s definition of privacy [69], we must show that

P | Votera(vg) | Voterg(vy)

~ P | Votera(vy) | Voterg(vg) (1)

where vy and vy are arbitrary votes chosen by the adversary and P is the rest of the
protocol, i.e. the mixnets and the bulletin board. As usual, we must rule out trivial privacy
attacks against the indistinguishability in Eq. (7.1). Indeed, an adversary can trivially
break security by letting the first voter cast its ballot, but blocking the ballot of the second
voter. Further, the adversary does not cast any dishonest ballots itself. Then, inspecting
the final bulletin board breaks the indistinguishability, as it only contains the first voter’s
vote.

Our model rules out this trivial attack by having the final mixnet publish the ballot
box only if it contains the ballots of the two honest agents, for both phases (see checks
21,22).

Squirrel encoding. We encode the protocol in SQUIRREL following closely the descrip-
tion in Figure 7.6. The reader can refer to the file foo/processes. sp for details. To follow
the protocol structure, we add axioms in SQUIRREL to capture the phases our protocol.
These phases are delimited by two key timestamps: MVP and MOP that respectively
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Group of files LoC
Definitions and utilities 1652
Reduction to Privacy_ CCA 3274
Deduction steps and shuffle opening 3242
Cryptographic arguments 2054

Table 7.1: Overview of the Squirrel development for FOO.

correspond to the time points after the first and the second mixnet outputs. This implies
that

o frame@pred(MVP) corresponds to the frame at the end of phase 1;
o frame@MVP corresponds to the frame at the end of phase 2;
o frame@pred(MOP) corresponds to the frame at the end of phase 3; and

e frame@MOP corresponds to the frame at the end of phase 4.

7.4.3 Proof

We define in Squirrel a pair of systems, called Privacy_real, corresponding to Eq. (7.1).
Contrary to the informal protocol description, our system never aborts: instead, if one of
the aborting conditions of Figure 7.6 fails, the corresponding agent will output a dummy
message. Thus it is always possible to keep executing the protocol until its very last action
MOP (corresponding to 23), where the second mixnet publishes commit tokens. We show
that for any trace ending with MOP, the two frames (with and without the votes swapped)
are indistinguishable:

global theorem vote_ privacy Osystem:Privacy_real : equiv(frame@MOP).

We provide in Table 7.1 an overview of how the 10 kLOC of the Squirrel development
are split across the different steps of our proof, explained it this section.

CCA2 rewriting. The first step in the proof is to reduce this theorem to the same one
but for a modified pair of systems, called Privacy_ CCA, where all encryptions are replaced
by same-length encryptions of zeroes. This step is itself justified by two reductions to the
CCA2 game, for sk,%1 and sk,Zn. In the resulting systems, the messages sent to the mixnets
are completely hidden from the attacker, which is necessary for several reasoning steps in
the rest of the proof.

Case analysis. Let us note ¢ the condition expressing that the two honest votes have
successfully gone through the whole protocol. That is, the protocol never aborts. The
conditions ¢ is then a conjunction of four conditions, i.e. ¢ = @1 A @2 A @3 A @4, defined as
follows:

o In phase 1, both Votera and Voterg did not abort if they accept the blind
signature. We let ¢ be this conditions, i.e. ¢ = accy A accp.
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o In phase 2, the mixnet does not abort on condition ¢» ot duplicates bb;.

« In phase 3, both Votera and Voterg do not abort if they find their commit in the
Bulletin Board. We let ¢3 be this conditions, i.e. ¢3 = voteds A votedp.

e In phase 4, the mixnet does not abort on conditions ¢, @2, ¢3 and ¢4 def

not duplicates bbs.

Next, we proceed by case analysis [30] over the condition ¢. This yield two subgoals
for our proofs:

equiv(g,if ¢ then frame@MOP).

and

equiv(g,if not ¢ then frame@MOP).

Crucially, note that the condition ¢ also has to be deduced.

Deduction. Our goal now is to reduce the above indistinguishabilities to simpler in-
distinguishabilities. The idea is that we want to simplify the equivalence as much as
possible for the application of cryptographic assumptions. To that end, we use deduction.
Deduction is a predicate in SQUIRREL such that u > v when there exists an adversarial
function f such that f u = v. In particular, we have that u > v and equiv(u) implies equiv(v).
We are going to find vectors of terms 7 and 1ot such that

F > @,if ¢ then frame@MOP and prot @, if not ¢ then frame@MOP.

Then, we reduce both subgoals’ equivalence to proving the equivalences equiv(7) and
equiv(r"or).

The deduction predicate is transitive. We exploited this fact to reduce our proof goals
step by step. In particular, we show below the main deduction step used in both proofs.
In both proofs, we are going at some point to prove that

7 > if not dupplicate bb; A ¢ then shuffle bb;

for some vector of term 7 and boolean term . This is the general form of mixnet outputs.

A crucial observation is that to deduce a shuffie shuffle(Ai. f i) of a function f it is
sufficient to know the list of its inputs (f i). Because of the key property of shuffles, we
can modify the shuffle into shuffle(Ai. f (p i)) for any permutation p of our choice in order
to obtain the list of inputs (f i) in a convenient order.

In practice, the only elements in shuffles we are interested in are Voterp and Voterg’s
data, if present. Based on the earlier observation, we design the following lemma in a
simplified version in Figure 7.7 on shuffle, which basically extracts two points (f i) and
(f j) from a shuffie of f to be the first and second elements of the list. Applying this
lemma will be referred to as the shuffle.

Depending on ¢, we are going to open the mixnets’ shuffles differently, in order to
apply specific cryptographic arguments (see later).

Finally, in both cases, the condition not duplicate bb; or not duplicate bby implies that
once Voterp and Voterg’s data have been extracted the rest on the shuffle can only be
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7.4. The FOO protocol

global lemma @system:Privacy_ CCA open_shuffle (i j:index) (¢:bool) (f: index — message) :
(p.if @ then {i,j}, (i =]), fi, fj, fig ) > (if ¢ then shuffle f)

Figure 7.7: Deduction lemma for shuffles. There, the element {i, j} is the set of two
elements 7 and j and fy; j; is the function f where the image of both i and j are set to a
dummy value. The elements {i,j} and (i = j) under condition ¢ are needed to extract the
two specific points from f under condition ¢ during the proof.

an attacker computation with previous messages. That is how we deduce the component
figijy- This argument hides auxiliary cryptographic arguments that are performed as
part of the above decomposition. For example, the commit of an honest voter cannot be
confused with that of another voter (honest or not), hence the failure of the duplication
check at (11) can only be caused by two dishonest ballots, which is not a concern for privacy.
Or we show that commits and commit keys remain secret in the relevant early phases of
the protocol, using the blinding and commitment hiding and key-hiding assumptions on a
truncated system where the later mixnets are ineffective.

Case ¢. When ¢ holds, the attacker has access to the final publication of the commit
keys. Although A and B’s commits can thus be opened to the vote they contain, their
voting material from the first phase is still private thanks to blind signatures.

That is why it is crucial in this case that we open both shuffles to organize the voting
material by vote rather than by identity. We let k. ¢;, acc; and ub; be the commitment
key, commit, acceptance condition and unblinding (as in Figure 7.6) of the voter who
voted v;. The two shuffles (of keys and commits) will be opened by extracting in first
position data related to 0 and in second position data related to 1.

Furthermore, in this case, the deduction is phased. The difficulty here is that we need
the conditions in ¢ to rewrite terms it is guarding, but that ¢ also contains elements we
want to erase though deduction.

In this case we find r1,r2,r3 and r4 such that

(* 1 %) rd, o1 A o3 A @3, if o1 A @2 A @3 then frame@pred(MOP) > ¢,if ¢ then frame@MOP

(* 2 %) 13, o1 A @2, if 91 A @a then frame@MVP > @1 A p3 A @3,if ©1 A 92 A @3 then frame@pred(MOP)
(* 3 %) r2, ¢1, if @1 then frame@pred(MVP) > @1 A @o,if ¢1 A 2 then frame@MVP

(* 4 *) rl, frameQinit > ¢1,if @1 then frame@pred(MVP)

In particular, the subgoals (1) and (3) correspond to shuffle openings, applying what
we have seen earlier, the deduction (1) is done by having k?, k! in r4, and the deduction
(3) with co, c1,if accy A accy then (ubg, uby) in r2. Removing replicate, we have

r1,r2,r3,r4 > m,b 4, accp, b, accp, co, 1 if accy A accy then (ubg, uby))

where m contains irrelevant cryptographic material (encryption keys, etc.), b4 the blinding
received by Voterp, and bp the blinding received by Voterg.
Hence, by transitivity we reduce to a simpler indistinguishability

equiv(m,b 4, acca, bp, accg, ¢p, ¢1 if accy A accy then (ubg, uby))
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Finally, note that

ba = diff(bg, by)

bp = diff(b1, by)

acca = diff(accg, accy) and
accg = diff(accy, accp).

We thus have an equivalence that has the form of a sequence of message of an adversary
against the Adaptative Selective Failure Blindness game and we end the proof using crypto
by reduction to this game.

Case not ¢. When ¢ does not hold, the commitment keys are not revealed by the second
mixnet. Hence, privacy follows from the commitment hiding property.

Before reducing to the hiding property, we must deal with the fact that the attacker
may have altered Voterp or Voterg messages (e.g. blocking only Votera’s messages),
so we must organize shuffles” inputs by identity. We open the shuffies by always putting
Votera’s data first and Voterg’s data second, when they are present in the shuffles.

As before we reduce to a simple indistinguishability using deduction, showed below.
This step is simpler than the case where ¢ holds, and it is done at once; we do not deduced
phase by phase.

equiv(m',ca, cg)

where m’ is a set of irrelevant terms, ca the commit of Voter, and cg the commit of
Voterg. Note that

ca = commint diff(vg, vy) kca and cg = commint diff(vy,vq) k¢p,

with k.4 and k.g the commitment keys of respectively Voter, and Votery. Then, crypto
reduces to the commitment’s hiding game to end the proof.
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Conclusion

Summary

We added support for cryptographic reductions to arbitrary cryptographic games in the
CCSA-HO logic. To that end, we designed a novel variant of bideduction, improving
upon the existing version by allowing to synthesize simulators that can perform oracle
calls and random samplings. Our key contributions are: our novel bideduction judge-
ment, which captures the existence of a simulator witnessing a cryptographic reduction,
a bideduction rule that lifts this judgement to an indistinguishability of the logic by
cryptographic reduction, and a proof system to derive bideduction judgements. Two key
ingredients made this possible. First, we introduced the notion of constraint systems,
which register randomness usage and ownership. Constraint system are crucial to ensure
that the synthesized simulator handles randomness as an adversary must, and to couple
the simulator’s sample space with the logic’s sample space. Second, we equipped the
bideduction predicate with a Hoare-sytle assertion logic to capture the evolution of a
game’s memory through the proof system. The soundness of the proof system was proved.
Once we defined the bideduction logic and proof system, we implemented an automated
procedure that searches for bideduction proofs without backtracking. This proof search
procedure can synthesize memoizing simulators and infer precise time-sensitive memory
invariants. These two aspects are essential to lift a restriction we identified with the
reductions to the CCA2 cryptographic game. Finally, we made our procedure available
as a SQUIRREL tactic called crypto and used it to validate our approach on several case
studies. Our evaluation showed that the tactic could replace legacy cryptographic tactics
in practical cases as well as add support for new cryptographic assumptions not supported
by SQUIRREL before. Nowadays, the crypto tactic is commonly used by other SQUIRREL
users. Finally, we stress-tested our approach on a large case study: the FOO e-voting
protocol. It is the most complex SQUIRREL proof to date. It also notably provides a novel
proof method in SQUIRREL, relying on deduction.
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Limitations and future work

The natural continuation for this work lies in the usage of crypto by SQUIRREL users.
Indeed, we have already identified minor coding improvement that can be made in the
embedding behind our proof search within SQUIRREL (e.g. ad-hoc handling of reachability
games, etc.). Also, the usage of crypto will also test our framework on new case studies,
and likely uncover other limitations. However, this work also lead to more fundamental
open questions.

Exact semantics. We want to stress that our proof system relies on exact semantics:
the semantics of the bideduction judgment relies on a notion of exact computation. As
a result the rewriting rules of our proof system rewrite a term u into v only when u is
exactly equal to v ([u = v]e). Less obvious, however, is that the assertion logic is also used
in an exact way. Indeed, looking back at the validity of our oracle triples, we see that
it holds for any memory satisfying the pre-condition, for any tape. While this has not
limited us in the use cases we have encountered so far, it remains theoretically unsatisfying:
the CCSA-HO framework supports notions of overwhelming truth in predicates, which
conveniently abstracts away probabilistic considerations. Yet, our framework introduces
a gap here. Relaxing the exact semantics limitation also raises intriguing questions. For
example, if we allow for "approximately correct simulators" — simulators that interact
correctly with a game only with an overwhelming probability to deduce a term — how
do we formally define them? And more critically, how do we justify the soundness of our
rules? In this work, soundness follows from cryptographic assumptions, but with such
approximations, this no longer holds strictly: the simulator no longer corresponds to a
direct interaction with a game.

Assertion logic. The assertion logic we implemented is intentionally focused only on
monotonous logs. While this suffices for our use cases, there is significant room for improve-
ment. For instance, even "simple" cases like booleans are not directly supported—though
workarounds exist using logs, native boolean support would be more intuitive, especially
for phased games. Another key extension would be finite maps, a natural next step beyond
logs. Finite maps are ubiquitous in cryptographic games (e.g., for modelling random
oracles) and would greatly expand the framework’s expressiveness.

Full automation. We opted for full automation because it aligns with the legacy
cryptographic tactics usage in SQUIRREL, which was already fully automated, and offers a
more user-friendly embedding compared to a tactics-based approach. However, this choice
comes with trade-offs.

First, we might want to improve our proof search (e.g. to use rewriting lemmas, etc.)
but efficiency would likely be a major obstacle for improvement. Since our tactic operates
within a proof assistant, even a one-minute runtime can be prohibitive, restricting the
scalability of our proof search.

Second, full automation reduces our control over the choices made during proof synthesis.
This lack of flexibility demands significant effort in tuning the system, and understanding
the proof search to ensure the synthesis works as intended. We can explore alternative
mechanization strategies. The approach based on tactics is often more flexible as it does
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not reduce user control. However, our synthesis procedure’s three-phase structure and
generation of long, complex invariants make a purely tactics-based approach impractical.
These challenges suggest that a hybrid approach might strike a better balance between
automation and control.

System guessing. There is currently a marge of improvement from cryptographic proofs
to our approach. Often in practice, a game-hopping proof is thought as a system rewriting
step: given a pair of games (Gy, G1) and a single system Sy, we define S; such that the
indistinguishability of Sp and S; reduces to the indistinguishability of (Go, G1). Frameworks
like CRYPTOVERIF [38] follows that practice and implements the guessing part of system.
Furthermore, Sy and Sy are (implicit) arguments of crypto. and, in SQUIRREL, users need
to manually write down Sy and S; for each proof step, this has been a time-consuming
task for our proof of the FOO protocol. Mechanizing this process — i.e. infering S; from
So— and automating it in SQUIRREL would significantly improve usability.

Theory follow up. Our new framework for simulator synthesis was designed with
CCSA-HO and SQUIRREL in mind. From a theoretical perspective, the key question is
how applicable the framework can be to the broader domain of cryptographic verification.
This leads to two main open questions. First, what can we say about the expressiveness
of our logic? We aim to better characterize its capabilities: Is it complete, or can we
identify the specific classes of reductions it effectively captures? Second, we can explore
the framework’s generality to understand how tightly it is tied to SQUIRREL. An intriguing
direction is to generalize and adapt our approach to other systems, such as EASYCRYPT,
which could reveal its broader applicability. In particular, our framework roughly captures
reductions of SQUIRREL-like protocols to games, which is less general than cryptographic
reductions, we could explore how to adapt our framework for reductions of games to
games.
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RESUME

Cette these étudie la vérification des protocoles cryptographiques dans le cadre CCSA, une approche de vérification
formelle basée sur une logique probabiliste pour prouver les propriétés de sécurité dans le modéle computationnel.
Cette approche est implémentée dans 'assistant de preuve SQUIRREL. Cette these s’intéresse a la mécanisation des
réductions cryptographiques, une technique de preuve centrale en cryptographie ou la sécurité d’'un protocole est réduite
a une hypothése calculatoire cryptographique par la construction d’'un simulateur.

Avant cette thése, le cadre CCSA fournissait des axiomes logiques dont la validité était établie manuellement par des
réductions. Ces réductions sont une source possible d’erreurs et les axiomes logiques n’avait été congus seulement
pour un nombre restreint d’hypothéses calculatoires (par exemple, CCA, PRF, EUF-MAC). Chaque axiome nécessitait
également un effort d'implémentation, lui aussi source d’erreurs. Malheureusement, ces taches (conception, preuve et
implémentation des axiomes) étaient inaccessibles aux utilisateurs typiques, limitant ainsi la capacité de I'approche CCSA
a passer a I'échelle.

La contribution majeure de cette thése est une approche permettant de capturer des réductions vers des jeux cryp-
tographiques arbitraires dans le cadre de la logique CCSA. Nous introduisons une logique dont le prédicat central, le
prédicat de bidéduction, formalise I'existence d’'un simulateur justifiant une réduction cryptographique. Nous proposons
ensuite un systéme de preuve pour dériver ces prédicats, qui infere implicitement les simulateurs. Nous avons en outre
implémenté dans SQUIRREL une procédure de recherche de preuve qui synthétise des simulateurs qui mémoisent et
géneérent des invariants sensibles au temps pour justifier la correction des simulateurs inférés. Notre implémentation
élargit significativement la portée des preuves dans SQUIRREL, en étendant 'ensemble des hypothéses calculatoires
cryptographiques supportées. Pour valider notre approche, nous I'avons appliquée a des études de cas, en reproduisant
des preuves existantes dans SQUIRREL et en traitant de nouveaux cas qui n’étaient pas prouvables auparavant. Ce travail
culmine avec la premiére preuve mécanisée de la confidentialité des votes pour le protocole de vote électronique FOO —
la plus grande preuve réalisée a ce jour dans SQUIRREL.

MOTS CLES

Jeux cryptographiques, Systéme de vérification, Logique CCSA, Preuves de sécurité

ABSTRACT

This thesis investigates cryptographic protocol verification in the CCSA framework, a formal verification approach based
on a probabilistic logic for proving security properties in the computational model. This framework is implemented in the
Squirrel proof assistant. The main focus of the thesis is the mechanization of cryptographic reductions — a core proof
technique in cryptography in which the security of a protocol is reduced to a cryptographic hardness assumption via the
construction of a simulator.

Prior to this thesis, the CCSA framework provided logical axioms whose soundness was established through manual,
error-prone reductions to a fixed set of cryptographic hardness assumption (e.g., CCA, PRF, EUF-MAC). Each axiom
also necessitated implementation efforts, which were prone to errors. Unfortunately, these tasks (designing, proving, and
implementing the axioms) were inaccessible to typical users, thus limiting the scalability of the CCSA approach.

The main contribution of this thesis is a framework that captures reductions to arbitrary cryptographic games for the
CCSA framework. We introduce a logic with a core predicate, the bideduction predicate, which express the existence
of a simulator justifying a cryptographic reduction. We then provide a proof system to derive such predicates, implicitly
inferring simulators. We further implement in SQUIRREL a proof search procedure that synthesize memoizing simulators
and generates time-sensitive invariants to justify the inferred simulator’s correctness. Our implementation significantly
extends SQUIRREL’s scope as it extends the set of supported cryptographic hardness assumptions. To validate our
approach, we apply it to case studies, reproving existing SQUIRREL case studies and analysing new ones which were not
provable in SQUIRREL before. This work culminates with the first mechanized proof of ballot privacy for the FOO e-voting
protocol the largest proof conducted in SQUIRREL to date.

KEYWORDS

Cryptographic games, Verification system, CCSA logic, Security proofs




	Abstract
	Résumé
	Introduction
	Protocols and attacks
	Alice, Bob and Mallory
	Taking a step back

	Modelling
	Users, attacker model, and oracle programming language
	Taking a step back

	Security proofs
	Cryptographic hardness assumptions
	Security properties
	Reasoning: game hops and cryptographic reductions

	Mechanizing proofs
	CCSA approaches
	Computer-aided verification

	This thesis
	Starting problem
	Contributions
	Related work


	The CCSA-HO Logic
	Types and type structures
	Terms
	Variables and typing environments
	Term syntax and semantics

	Recursion
	Environments and models

	Probabilistic logic

	Formal Model for Cryptographic Reduction
	Overview and motivating example
	Syntax
	Expressions and programs
	Games
	Simulators and adversaries

	Semantics
	Memories
	Program random tapes
	Expression and program semantics
	Cost model
	Adversaries
	Adversaries and security


	Bideduction
	Overview
	Bideduction judgement
	Name constraints
	Assertion logic
	Bideduction judgement

	Bideduce rule
	Chapter appendix: couplings
	Preliminaries: probability theory
	Couplings and lifting lemma
	Well-formedness of constraint systems
	Couplings arrays
	Constructing a coupling contained in 
	Proof of thm:bided


	Bideduction Proof System
	Overview
	Proof system
	Preliminary definitions
	Inference rules
	Example

	Soundness
	Preliminary definitions
	Validity and well-formedness lemmas
	Memory flow lemmas
	Computation lemmas
	Adversary lemmas
	Footprint lemma
	Structural rules
	Adversarial rules
	Computational rules


	Automation
	Motivating example: an abstract mixnet
	Preliminary definitions
	Standard library
	Assertion logic

	Basic simulator synthesis
	Synthesis queries
	Synthesis query rules
	The basic simulator synthesis procedure

	Inductive simulator synthesis
	Invariant synthesis
	Example
	Soundness


	Implementation and Case Studies
	Preliminary on Squirrel syntax
	Implementation
	Inputs of the [language=squirrel-math,basicstyle=,]"crypto" tactic
	Outputs of the [language=squirrel-math,basicstyle=,]"crypto" tactic

	Case studies
	The FOO protocol
	Cryptographic primitives and assumptions
	The FOO protocol security
	Proof


	Conclusion
	List of Figures
	Bibliography

