

Foundations for Cryptographic Reductions in CCSA Logics

David Baelde¹ Adrien Koutsos² Justine Sauvage²

¹Univ Rennes, CNRS, IRISA, France

²Inria, France

Context: Cryptographic reductions

- Cryptographic protocols are critical parts of communication systems.
⇒ **verification** provides strong security guarantees.
- Security proofs of protocols rely on **cryptographic reductions**.

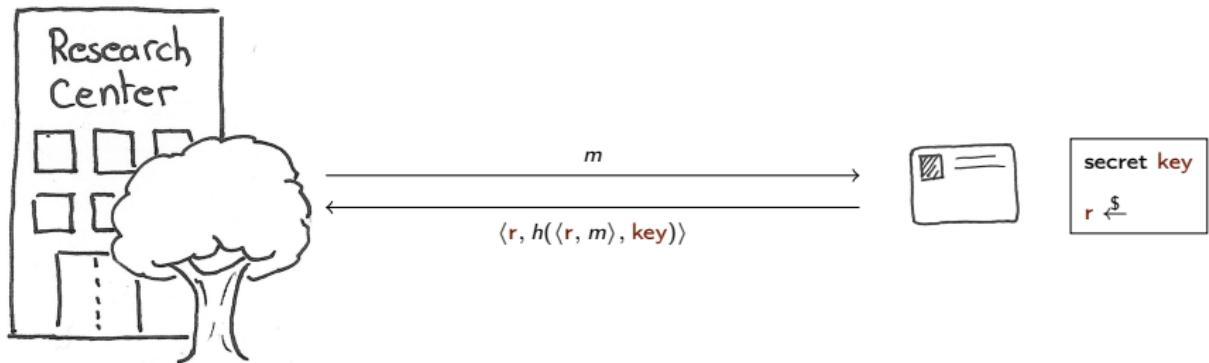
\mathcal{A} breaches security of protocol

⇒**reduction**

\mathcal{B} breaches security of primitive.

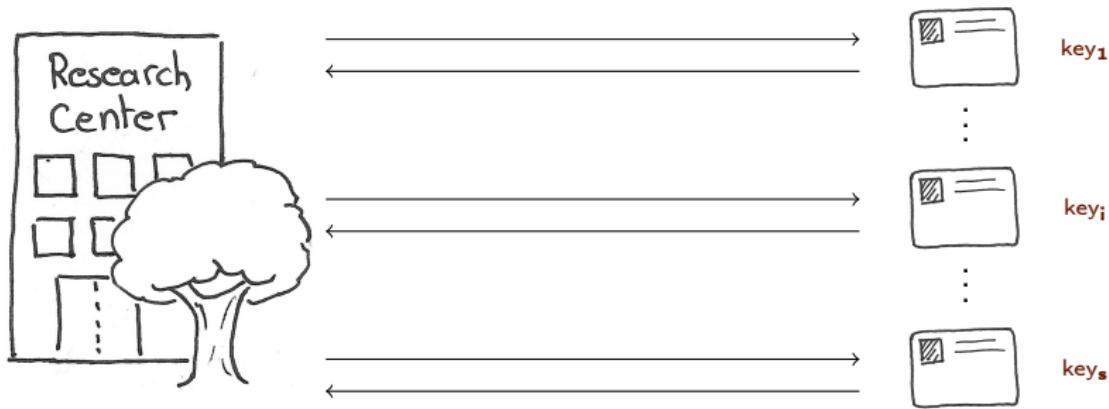
Cryptographic reduction: example

RFID protocol



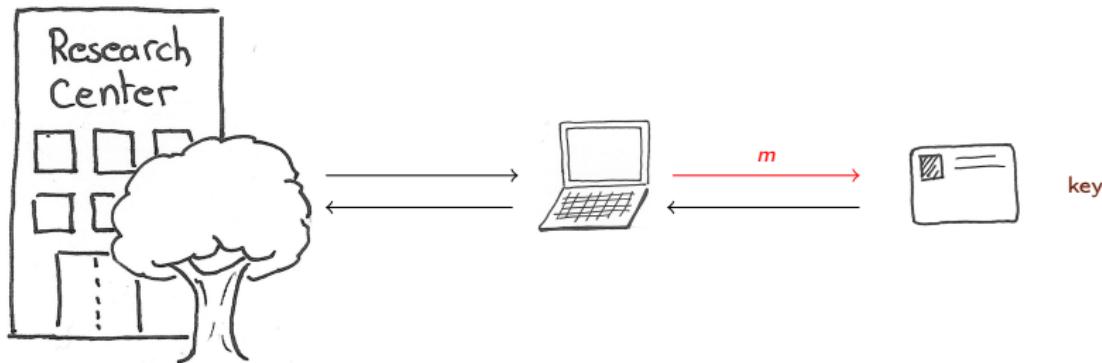
Cryptographic reduction: example

RFID protocol



Cryptographic reduction: example

RFID protocol



Key secrecy: Attackers cannot learn anything about the keys

Attacker's point of view:

$$\dots, \langle \mathbf{r}, h(\langle \mathbf{r}, \mathbf{m} \rangle, \text{key}) \rangle, \dots$$

\sim

$$\dots, \langle \mathbf{r}, \mathbf{r}' \rangle, \dots$$

Context: cryptographic games

A pseudo-random function is a function that “seems” random.

Game $G_{\#(\text{Left}, \text{Right})}$

```
oracle Init := {k  $\leftarrow$  $; log := []}  
oracle Hash(x) := {  
    r  $\leftarrow$  $  
    if (x  $\notin$  log) {  
        log := x :: log  
        return  $\boxed{\#(h(x, k), r)}$   
    }  
}
```

Assumption: PRF

No polynomial-time adversary \mathcal{B} can distinguish G_{Left} from G_{Right} .

Context: cryptographic reduction

$\langle \mathbf{r}_1, h(\langle \mathbf{r}_1, m_1 \rangle, \mathbf{key}_1) \rangle, \langle \mathbf{r}_2, h(\langle \mathbf{r}_2, m_2 \rangle, \mathbf{key}_2) \rangle, \dots$

Context: cryptographic reduction

$\langle \mathbf{r}_1, h(\langle \mathbf{r}_1, m_1 \rangle, \mathbf{key}_1) \rangle, \langle \mathbf{r}_2, h(\langle \mathbf{r}_2, m_2 \rangle, \mathbf{key}_2) \rangle, \dots$

$\langle \mathbf{r}_1, \mathbf{r}'_1 \rangle, \langle \mathbf{r}_2, h(\langle \mathbf{r}_2, m_2 \rangle, \mathbf{key}_2) \rangle, \dots$

Context: cryptographic reduction

$\langle r_1, h(\langle r_1, m_1 \rangle, \text{key}_1) \rangle, \langle r_2, h(\langle r_2, m_2 \rangle, \text{key}_2) \rangle, \dots$

$\langle r_1, r'_1 \rangle, \langle r_2, h(\langle r_2, m_2 \rangle, \text{key}_2) \rangle, \dots$

Context: cryptographic reduction

$\langle \mathbf{r}_1, h(\langle \mathbf{r}_1, m_1 \rangle, \mathbf{key}_1) \rangle, \langle \mathbf{r}_2, h(\langle \mathbf{r}_2, m_2 \rangle, \mathbf{key}_2) \rangle, \dots$

$\langle \mathbf{r}_1, \mathbf{r}'_1 \rangle, \langle \mathbf{r}_2, h(\langle \mathbf{r}_2, m_2 \rangle, \mathbf{key}_2) \rangle, \dots$

$\langle \mathbf{r}_1, \mathbf{r}'_1 \rangle, \langle \mathbf{r}_2, \mathbf{r}'_2 \rangle, \dots$

Context: cryptographic reduction

$\langle \mathbf{r}_1, h(\langle \mathbf{r}_1, m_1 \rangle, \mathbf{key}_1) \rangle, \langle \mathbf{r}_2, h(\langle \mathbf{r}_2, m_2 \rangle, \mathbf{key}_2) \rangle, \dots$

$\langle \mathbf{r}_1, \mathbf{r}'_1 \rangle, \langle \mathbf{r}_2, h(\langle \mathbf{r}_2, m_2 \rangle, \mathbf{key}_2) \rangle, \dots$

$\langle \mathbf{r}_1, \mathbf{r}'_1 \rangle, \langle \mathbf{r}_2, \mathbf{r}'_2 \rangle, \dots$

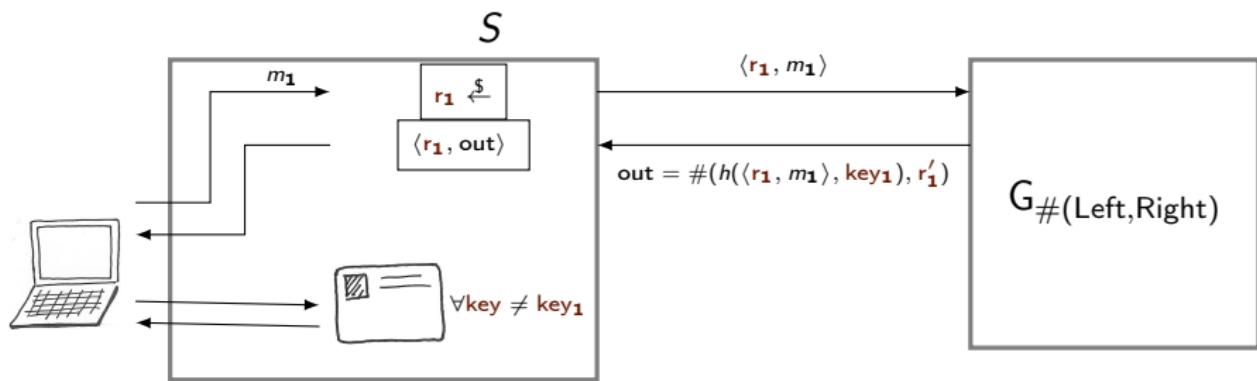
\vdots

$\langle \mathbf{r}_1, \mathbf{r}'_1 \rangle, \langle \mathbf{r}_2, \mathbf{r}'_2 \rangle, \dots$

Context: cryptographic reduction

$$\langle \mathbf{r}_1, h(\langle \mathbf{r}_1, m_1 \rangle, \mathbf{key}_1) \rangle, \dots \sim \langle \mathbf{r}_1, \mathbf{r}'_1 \rangle, \dots$$

Build a simulator S such that:



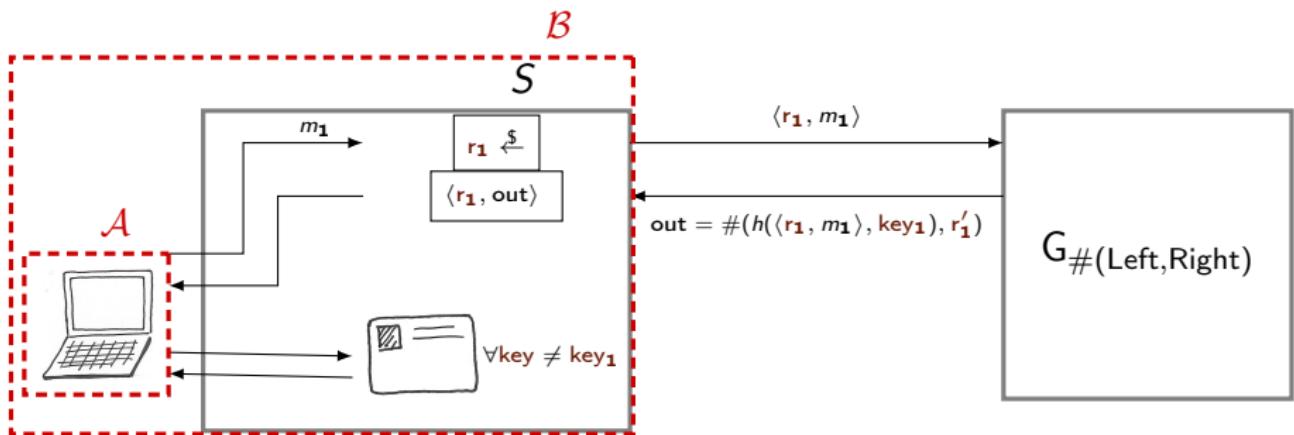
Context: cryptographic reduction

\mathcal{A} against $\langle r_1, h(\langle r_1, m_1 \rangle, \text{key}_1) \rangle, \dots \sim \langle r_1, r'_1 \rangle, \dots$

\Rightarrow reduction

\mathcal{B} against PRF assumption

Build a simulator S such that:



Problem

Squirrel Prover:

- interactive proof assistant;
- relies on the CCSA logic;
- allows for proof mechanization.

Cryptographic assumptions in Squirrel:

reasoning rules (tactics) for specific games (e.g. PRF, CCA1).

Problems:

- manually design and prove each new rule;
- implement each new rule in the tool.

⇒ out-of-reach for standard users and error prone.

Contributions

- Framework for bi-deduction supporting cryptographic reductions.

$\vec{u} \triangleright \vec{v} \circ \circ \circ$
 $\exists S, \dots$

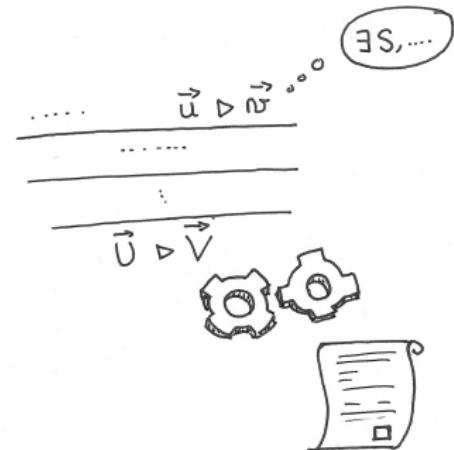
Contributions

- Framework for bi-deduction supporting cryptographic reductions.
- Proof system (implicitly build simulators through inference rules).

$$\frac{\overbrace{\quad\quad\quad}^{\exists S, \dots} \vec{u} \triangleright \vec{v} \quad \dots \quad \vec{u} \triangleright \vec{v}}{\vec{U} \triangleright \vec{V}}$$

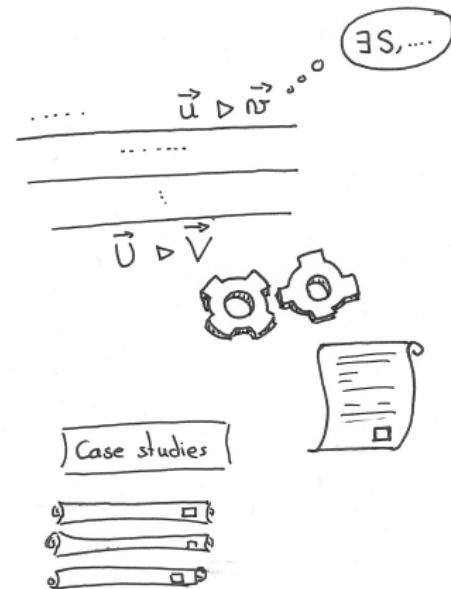
Contributions

- Framework for bi-deduction supporting cryptographic reductions.
- Proof system (implicitly build simulators through inference rules).
- Heuristic proof-search algorithm and its implementation in Squirrel.



Contributions

- Framework for bi-deduction supporting cryptographic reductions.
- Proof system (implicitly build simulators through inference rules).
- Heuristic proof-search algorithm and its implementation in Squirrel.
- Validation through case studies.



Bi-deduction predicate: starting point

Bideduction predicate

$$\vdash \#(\vec{u}_0, \vec{u}_1) \triangleright \#(\vec{v}_0, \vec{v}_1)$$

There exists a simulator S such that

$$S_{G_{Left}}(\vec{u}_0) = \vec{v}_0 \quad S_{G_{Right}}(\vec{u}_1) = \vec{v}_1$$

Bi-deduction predicate: starting point

Bideduction predicate

$$\vdash \#(\vec{u_0}, \vec{u_1}) \triangleright \#(\vec{v_0}, \vec{v_1})$$

There exists a simulator S such that

$$S_{G_{Left}}(\vec{u_0}) = \vec{v_0} \quad S_{G_{Right}}(\vec{u_1}) = \vec{v_1}$$

Compute $h(\langle \mathbf{r}, m \rangle, \mathbf{key})$ from $\langle \mathbf{r}, m \rangle$ and \mathbf{key} ?

$$\begin{array}{l} \mathcal{S}() := (x_{pair}, x_{key}) \leftarrow \mathcal{S}_1(); \\ \quad \quad \quad \hbox{---} \\ \quad \quad \quad x_{res} \leftarrow h(x_{pair}, x_{key}) \end{array}$$

$$\frac{\vdash _ \triangleright \langle \mathbf{r}, m \rangle, \mathbf{key} \quad \text{poly-time}(h)}{\vdash _ \triangleright h(\langle \mathbf{r}, m \rangle, \mathbf{key})}$$

Bi-deduction predicate: handling randomness

Different sources of randomness:

- $\text{key}_1 \rightarrow \text{game}$
- $\text{r}_1 \rightarrow \text{simulator}$

$$\overline{(\text{r}_1, \text{T}_S) \vdash _ \triangleright \text{r}_1}$$

$$\mathcal{S}(_) := x_{r_1} \xleftarrow{\$}$$

Constraint system:
associates samplings to their tag

Bi-deduction predicate: enabling oracle calls

$$\begin{array}{c} \mathcal{S}() := x_m \leftarrow \mathcal{S}_1(); \\ \quad \quad \quad x_h \leftarrow G.\text{Hash}(x_m) \end{array}$$

$$\frac{\mathcal{C} \vdash _ \triangleright \langle \mathbf{r}_1, m_1 \rangle}{\mathcal{C}' \vdash _ \triangleright \#(h(\langle \mathbf{r}_1, m_1 \rangle, \mathbf{key}_1), \mathbf{r}'_1)}$$

with $\mathcal{C}' = \mathcal{C} \cdot (\mathbf{r}'_1, \mathbf{T}_G) \cdot (\mathbf{key}_1, \mathbf{T}_G)$

Bi-deduction predicate: enabling oracle calls

$$\begin{array}{c} \mathcal{S}() := x_m \leftarrow \mathcal{S}_1(); \\ \mathbf{--} \\ x_h \leftarrow G.\text{Hash}(x_m) \end{array}$$

$$\frac{\mathcal{C}, \{\varphi\}\{\log = I\} \vdash _ \triangleright \langle \mathbf{r}_1, m_1 \rangle \quad \langle \mathbf{r}_1, m_1 \rangle \notin I}{\mathcal{C}', \{\varphi\}\{\log = \langle \mathbf{r}_1, m_1 \rangle :: I\} \vdash _ \triangleright \#(h(\langle \mathbf{r}_1, m_1 \rangle, \mathbf{key}_1), \mathbf{r}'_1)}$$

with $\mathcal{C}' = \mathcal{C} \cdot (\mathbf{r}'_1, \mathbf{T}_G) \cdot (\mathbf{key}_1, \mathbf{T}_G)$

Pre and post conditions
on game's memory

Bi-deduction predicate: wrapping up

Bideduction predicate

$$\mathcal{C}, \{\varphi\}\{\psi\} \vdash \vec{u} \triangleright \vec{v}$$

There exists S such that whenever \mathcal{C} is consistent:

- Randomness is used according to \mathcal{C} .
- From any memory in φ , S 's execution yields a memory in ψ .
- $S(\vec{u}) = \vec{v}$.

Bi-deduction predicate: wrapping up

Bidivation predicate

$$\mathcal{C}, \{\varphi\}\{\psi\} \vdash \vec{u} \triangleright \vec{v}$$

There exists S such that whenever \mathcal{C} is consistent:

- Randomness is used according to \mathcal{C} .
- From any memory in φ , S 's execution yields a memory in ψ .
- $S(\vec{u}) = \vec{v}$.

$$\frac{\mathcal{C}, \{\varphi_{\mathbf{init}}\}\{\psi\} \vdash \emptyset \triangleright \#(\vec{v}_0, \vec{v}_1)}{\vec{v}_0 \sim \vec{v}_1}$$

whenever \mathcal{C} is consistent.

Proof system overview

- Weakening rules
- Composing rules (loops, sequences)
- ...

DUP $\frac{\mathcal{E}, \Theta, C_{\#}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright \vec{v}_{\#}, \vec{t}_{\#}}{\mathcal{E}, \Theta, C_{\#}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright \vec{v}_{\#}, \vec{t}_{\#}, \vec{t}_{\#}}$	TRANSITIVITY $\frac{\begin{array}{c} \mathcal{E}, \Theta, C_{\#}^1, (\varphi_{\#}, \varphi'_{\#}) \vdash \vec{u}_{\#} \triangleright \vec{t}_{\#} \\ \mathcal{E}, \Theta, C_{\#}^2, (\varphi'_{\#}, \psi_{\#}) \vdash \vec{u}_{\#}, \vec{t}_{\#} \triangleright \vec{v}_{\#} \end{array}}{\mathcal{E}, \Theta, C_{\#}^1 \cdot C_{\#}^2, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright \vec{t}_{\#}, \vec{v}_{\#}}$	REFL $\frac{}{\mathcal{E}, \Theta, \emptyset, (\varphi_{\#}, \varphi_{\#}) \vdash \vec{u}_{\#}, t_{\#} \triangleright t_{\#}}$
FA $\frac{\begin{array}{c} \mathcal{E}, \Theta, C_{\#}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright \vec{v}_{\#}, (t_{\#}^1 \mid f_{\#}), \dots, (t_{\#}^n \mid f_{\#}) \\ \mathcal{E}, \Theta \vdash \text{adv}(g) \end{array}}{\mathcal{E}, \Theta, C_{\#}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright \vec{v}_{\#}, (g \ t_{\#}^1 \dots \ t_{\#}^n \mid f_{\#})}$	IF-THEN-ELSE $\frac{\begin{array}{c} \mathcal{E}, \Theta, C_{\#}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright \\ \vec{v}_{\#}, (b_{\#} \mid f_{\#}), (t_{\#} \mid f_{\#} \wedge b_{\#}), (t'_{\#} \mid f_{\#} \wedge \neg b_{\#}) \end{array}}{\mathcal{E}, \Theta, C_{\#}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright \vec{v}_{\#}, (\text{if } b_{\#} \text{ then } t_{\#} \text{ else } t'_{\#} \mid f_{\#})}$	
LAMBDA $\frac{\begin{array}{c} (\mathcal{E}, x : \textcolor{brown}{r}), \Theta, C_{\#}, (\varphi_{\#}, \varphi_{\#}) \vdash \vec{u}_{\#}, x \triangleright (t_{\#} \mid f_{\#}) \\ \mathcal{E}, x : \textcolor{brown}{r} \vdash t_{\#} : \textcolor{brown}{r}_{\text{b}} \quad \textcolor{brown}{r}_{\text{b}} \in \mathbb{B} \quad \text{enum}(\textcolor{brown}{r}) \end{array}}{\mathcal{E}, \Theta, \prod_{(x:\textcolor{brown}{r})} C_{\#}, (\varphi_{\#}, \varphi_{\#}) \vdash \vec{u}_{\#} \triangleright (\lambda(x : \textcolor{brown}{r}).t_{\#} \mid f_{\#})}$	INDUCTION $\frac{\begin{array}{c} (\mathcal{E}, x : \textcolor{brown}{r}), \Theta, C_{\#}, (\varphi_{\#}, \varphi_{\#}) \vdash \vec{u}_{\#}, (\lambda(y : \textcolor{brown}{r}).\text{if } y < x \text{ then } t[x \mapsto y] \mid f_{\#}), x \triangleright (t_{\#} \mid f_{\#}) \\ \mathcal{E}, x : \textcolor{brown}{r} \vdash t_{\#} : \textcolor{brown}{r}_{\text{b}} \quad \textcolor{brown}{r}_{\text{b}} \in \mathbb{B} \quad \text{finite}(\textcolor{brown}{r}) \quad \text{fixed}(\textcolor{brown}{r}) \quad \mathcal{E}, \Theta \vdash \text{well-founded}_{\textcolor{brown}{r}}(<) \wedge \text{adv}(<) \end{array}}{\mathcal{E}, \Theta, \prod_{(x:\textcolor{brown}{r})} C_{\#}, (\varphi_{\#}, \varphi_{\#}) \vdash \vec{u}_{\#} \triangleright (\lambda(x : \textcolor{brown}{r}).t_{\#} \mid f_{\#})}$	
NAME $\frac{\begin{array}{c} \mathcal{E}, \Theta, C_{\#}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright (t_{\#} \mid f_{\#}) \\ \mathcal{E}, \Theta, C_{\#} \cdot \{((\emptyset, n, t_{\#}, \top_S, f_{\#}))\}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright (n \ t_{\#} \mid f_{\#}) \end{array}}{\mathcal{E}, \Theta, C_{\#} \cdot \{((\emptyset, n, t_{\#}, \top_S, f_{\#}))\}, (\varphi_{\#}, \psi_{\#}) \vdash \vec{u}_{\#} \triangleright (n \ t_{\#} \mid f_{\#})}$		

Figure 6: Selected set of rules.

Automation

Heuristic proof search:

- goal-directed;
- constraint directed;
- greedily applies oracle calls.

Case studies:

Protocol	Hypotheses	Property
Basic Hash	EUF-MAC and PRF	Unlinkability
Hash Lock	PRF	Strong secrecy
Private Authentication	$CCA_{\$}$ NEW	Anonymity
NSL (partial)	$CCA2$ NEW	Strong secrecy

Conclusion

What we have done:

- Formal framework linking games, simulators, and the logic.
- Bi-deduction judgment to build simulators interacting with games.
- Proof system for bi-deduction.
- Implementation of proof-search algorithm.

On going and future work:

- Improve the proof-search heuristic (ongoing).
- “Stress test” on larger protocol (ongoing).
- Apply to other frameworks (e.g. EasyCrypt).

(contact me: justine.sauvage@inria.fr)