
Foundations for Cryptographic Reductions in
CCSA Logics

David Baelde1 Adrien Koutsos2 Justine Sauvage2

1Univ Rennes, CNRS, IRISA, France

2Inria, France

Justine Sauvage Cryptographic Reductions in CCSA 1 / 14



Context: Cryptographic reductions

Cryptographic protocols are critical parts of communication systems.
⇒ verification provides strong security guarantees.

Security proofs of protocols rely on cryptographic reductions.

A breaches security of protocol
⇒reduction

B breaches security of primitive.

Justine Sauvage Cryptographic Reductions in CCSA 2 / 14



Cryptographic reduction: example

RFID protocol

secret key

r $←

m

〈r, h(〈r,m〉, key)〉

Key secrecy: Attackers cannot learn anything about the keys

Attacker’s point of view:

· · · ,〈r, h(〈r,m〉, key)〉, · · ·
∼

· · · ,〈r, r′〉, · · ·

Justine Sauvage Cryptographic Reductions in CCSA 3 / 14



Cryptographic reduction: example

RFID protocol

keys

key1

keyi

...

...

Key secrecy: Attackers cannot learn anything about the keys

Attacker’s point of view:

· · · ,〈r, h(〈r,m〉, key)〉, · · ·
∼

· · · ,〈r, r′〉, · · ·

Justine Sauvage Cryptographic Reductions in CCSA 3 / 14



Cryptographic reduction: example

RFID protocol

key
m

Key secrecy: Attackers cannot learn anything about the keys

Attacker’s point of view:

· · · ,〈r, h(〈r,m〉, key)〉, · · ·
∼

· · · ,〈r, r′〉, · · ·

Justine Sauvage Cryptographic Reductions in CCSA 3 / 14



Context: cryptographic games

A pseudo-random function is a function that “seems” random.

Game G#(Left,Right)

oracle Init := {k $←; log := []}

oracle Hash(x) := {
r $←
if (x /∈ log) {

log := x :: log

return #(h(x,k), r)

}
}

Assumption: PRF
No polynomial-time adversary B can distinguish GLeft from GRight.

Justine Sauvage Cryptographic Reductions in CCSA 4 / 14



Context: cryptographic reduction

〈r1, h(〈r1,m1〉, key1)〉 , 〈r2, h(〈r2,m2〉, key2)〉, . . .

Justine Sauvage Cryptographic Reductions in CCSA 5 / 14



Context: cryptographic reduction

〈r1, h(〈r1,m1〉, key1)〉 , 〈r2, h(〈r2,m2〉, key2)〉, . . .

〈r1, r′1〉 , 〈r2, h(〈r2,m2〉, key2)〉, . . .

Justine Sauvage Cryptographic Reductions in CCSA 5 / 14



Context: cryptographic reduction

〈r1, h(〈r1,m1〉, key1)〉 , 〈r2, h(〈r2,m2〉, key2)〉, . . .

〈r1, r′1〉 , 〈r2, h(〈r2,m2〉, key2)〉 , . . .

Justine Sauvage Cryptographic Reductions in CCSA 5 / 14



Context: cryptographic reduction

〈r1, h(〈r1,m1〉, key1)〉 , 〈r2, h(〈r2,m2〉, key2)〉, . . .

〈r1, r′1〉 , 〈r2, h(〈r2,m2〉, key2)〉 , . . .

〈r1, r′1〉, 〈r2, r′2〉 , . . .

Justine Sauvage Cryptographic Reductions in CCSA 5 / 14



Context: cryptographic reduction

〈r1, h(〈r1,m1〉, key1)〉 , 〈r2, h(〈r2,m2〉, key2)〉, . . .

〈r1, r′1〉 , 〈r2, h(〈r2,m2〉, key2)〉 , . . .

〈r1, r′1〉, 〈r2, r′2〉 , . . .
...
〈r1, r′1〉, 〈r2, r′2〉, . . .

Justine Sauvage Cryptographic Reductions in CCSA 5 / 14



Context: cryptographic reduction

〈r1, h(〈r1,m1〉, key1)〉 , · · · ∼ 〈r1, r′1〉 , . . .

Build a simulator S such that:

m1
r1 $←

G#(Left,Right)

S
〈r1,m1〉

out = #(h(〈r1,m1〉, key1), r′1)
〈r1, out〉

∀key 6= key1

B

A

Justine Sauvage Cryptographic Reductions in CCSA 5 / 14



Context: cryptographic reduction

A against 〈r1, h(〈r1,m1〉, key1)〉 , · · · ∼ 〈r1, r′1〉 , . . .
⇒reduction

B against PRF assumption

Build a simulator S such that:

m1
r1 $←

G#(Left,Right)

S
〈r1,m1〉

out = #(h(〈r1,m1〉, key1), r′1)
〈r1, out〉

∀key 6= key1

B

A

Justine Sauvage Cryptographic Reductions in CCSA 5 / 14



Problem

Squirrel Prover:
interactive proof assistant;
relies on the CCSA logic;
allows for proof mechanization.

Cryptographic assumptions in Squirrel:
reasoning rules (tactics) for specific games (e.g. PRF, CCA1).

Problems:
manually design and prove each new rule;
implement each new rule in the tool.

⇒ out-of-reach for standard users and error prone.

Justine Sauvage Cryptographic Reductions in CCSA 6 / 14



Contributions

Framework for bi-deduction supporting
cryptographic reductions.

Proof system (implicitly build simulators
through inference rules).

Heuristic proof-search algorithm and its
implementation in Squirrel.

Validation through case studies.

Justine Sauvage Cryptographic Reductions in CCSA 7 / 14



Contributions

Framework for bi-deduction supporting
cryptographic reductions.

Proof system (implicitly build simulators
through inference rules).

Heuristic proof-search algorithm and its
implementation in Squirrel.

Validation through case studies.

Justine Sauvage Cryptographic Reductions in CCSA 7 / 14



Contributions

Framework for bi-deduction supporting
cryptographic reductions.

Proof system (implicitly build simulators
through inference rules).

Heuristic proof-search algorithm and its
implementation in Squirrel.

Validation through case studies.

Justine Sauvage Cryptographic Reductions in CCSA 7 / 14



Contributions

Framework for bi-deduction supporting
cryptographic reductions.

Proof system (implicitly build simulators
through inference rules).

Heuristic proof-search algorithm and its
implementation in Squirrel.

Validation through case studies.

Justine Sauvage Cryptographic Reductions in CCSA 7 / 14



Bi-deduction predicate: starting point

Bideduction predicate

` #(~u0, ~u1) B #(~v0, ~v1)

There exists a simulator S such that

SGLeft
(~u0) = ~v0 SGRight

(~u1) = ~v1

Compute h(〈r,m〉, key) from 〈r,m〉 and key?

S() := (xpair , xkey )← S1();

xres ← h(xpair , xkey )

` _ B 〈r,m〉, key poly-time(h)
` _ B h(〈r,m〉, key)

Justine Sauvage Cryptographic Reductions in CCSA 8 / 14



Bi-deduction predicate: starting point

Bideduction predicate

` #(~u0, ~u1) B #(~v0, ~v1)

There exists a simulator S such that

SGLeft
(~u0) = ~v0 SGRight

(~u1) = ~v1

Compute h(〈r,m〉, key) from 〈r,m〉 and key?

S() := (xpair , xkey )← S1();

xres ← h(xpair , xkey )

` _ B 〈r,m〉, key poly-time(h)
` _ B h(〈r,m〉, key)

Justine Sauvage Cryptographic Reductions in CCSA 8 / 14



Bi-deduction predicate: handling randomness

Different sources of randomness:
key1 → game
r1 → simulator

(r1, TS) ` _ B r1

S() := xr1
$←

Constraint system:
associates samplings to their tag

Justine Sauvage Cryptographic Reductions in CCSA 9 / 14



Bi-deduction predicate: enabling oracle calls

S() := xm ← S1();

xh ← G .Hash(xm)

C ` _ B 〈r1,m1〉

〈r1,m1〉 /∈ l

C′ ` _B#(h(〈r1,m1〉, key1), r′1)

with C′ = C · (r′1, TG ) · (key1, TG )

Justine Sauvage Cryptographic Reductions in CCSA 10 / 14



Bi-deduction predicate: enabling oracle calls

S() := xm ← S1();

xh ← G .Hash(xm)

C, {ϕ}{log = l} ` _ B 〈r1,m1〉 〈r1,m1〉 /∈ l

C′ , {ϕ}{log = 〈r1,m1〉 :: l} ` _B#(h(〈r1,m1〉, key1), r′1)

with C′ = C · (r′1, TG ) · (key1, TG )

Pre and post conditions
on game’s memory

Justine Sauvage Cryptographic Reductions in CCSA 10 / 14



Bi-deduction predicate: wrapping up

Bideduction predicate

C, {ϕ}{ψ} ` ~u B ~v

There exists S such that whenever C is consistent:
Randomness is used according to C.
From any memory in ϕ, S ’s execution yields a memory in ψ.
S(~u ) = ~v .

C, {ϕinit}{ψ} ` ∅ B #(~v0, ~v1)

~v0 ∼ ~v1

whenever C is consistent.

Justine Sauvage Cryptographic Reductions in CCSA 11 / 14



Bi-deduction predicate: wrapping up

Bideduction predicate

C, {ϕ}{ψ} ` ~u B ~v

There exists S such that whenever C is consistent:
Randomness is used according to C.
From any memory in ϕ, S ’s execution yields a memory in ψ.
S(~u ) = ~v .

C, {ϕinit}{ψ} ` ∅ B #(~v0, ~v1)

~v0 ∼ ~v1

whenever C is consistent.

Justine Sauvage Cryptographic Reductions in CCSA 11 / 14



Proof system overview

Weakening rules
Composing rules (loops, sequences)
...

Justine Sauvage Cryptographic Reductions in CCSA 12 / 14



Automation

Heuristic proof search:
goal-directed;
constraint directed;
greedily applies oracle calls.

Case studies:

Protocol Hypotheses Property

Basic Hash EUF-MAC and PRF Unlinkability
Hash Lock PRF Strong secrecy

Private Authentication CCA$
NEW Anonymity

NSL (partial) CCA2 NEW Strong secrecy

Justine Sauvage Cryptographic Reductions in CCSA 13 / 14



Conclusion

What we have done:
Formal framework linking games, simulators, and the logic.
Bi-deduction judgment to build simulators interacting with games.
Proof system for bi-deduction.
Implementation of proof-search algorithm.

On going and future work:
Improve the proof-search heuristic (ongoing).
“Stress test” on larger protocol (ongoing).
Apply to other frameworks (e.g. EasyCrypt).

(contact me: justine.sauvage@inria.fr)

Justine Sauvage Cryptographic Reductions in CCSA 14 / 14


	Introduction
	Conclusion

